首页 > 论文 > 量子光学学报 > 23卷 > 2期(pp:99-104)

光通信波段低频压缩态光场的实验制备

Generation of a Low-frequency Squeezed States at Telecommunication Wavelength

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

本文利用周期极化磷酸氧钛钾晶体构成的半整块结构简并光学参量振荡器实验制备了连续变量光通信波段低频压缩态光场。光学参量振荡器的阈值功率为210 mW。当775 nm抽运光场功率为130 mW时,在分析频段50 kHz~900 kHz范围内获得真空压缩态光场。在200 kHz分析频率处,压缩态光场的最大压缩度达50 dB;在最低分析频率50 kHz处,压缩态光场的压缩度为20 dB。该低频压缩态光场可为基于光纤的量子精密测量提供量子光源。

Abstract

A telecommunication wavelength low-frequency squeezed light for continuous variable at telecommunication wavelength is demonstrated from a semi-monolithic degenerate optical parametric oscillator (DOPO) based on a periodically poled KTP crystal. The threshold power for DOPO is 210 mW. The low-frequency squeezed light is generated with the pump light at 775 nm of 130 mW at analysis frequency range from 50 kHz~900 kHz. A maximum squeeze degree of 50 dB is obtained at analysis frequency of 200 kHz. A 20 dB squeeze light is obtained at the lowest analysis frequency of 50 kHz.

中国激光微信矩阵
补充资料

中图分类号:O437.1

DOI:10.3788/jqo20172302.0001

所属栏目:量子光学基础

基金项目:国家重点研发计划项目(2016YFA0301401); 国家自然科学基金项目(61227015); 国家青年基金项目(11204167; 61405109)

收稿日期:2016-12-20

修改稿日期:2016-12-28

网络出版日期:--

作者单位    点击查看

要立婷:量子光学与光量子器件国家重点实验室,山西大学光电研究所,极端光学协同创新中心,山西大学, 山西 太原 030006
冯晋霞:量子光学与光量子器件国家重点实验室,山西大学光电研究所,极端光学协同创新中心,山西大学, 山西 太原 030006
高英豪:量子光学与光量子器件国家重点实验室,山西大学光电研究所,极端光学协同创新中心,山西大学, 山西 太原 030006
张宽收:量子光学与光量子器件国家重点实验室,山西大学光电研究所,极端光学协同创新中心,山西大学, 山西 太原 030006

联系人作者:要立婷(13327407221@163.com)

备注:要立婷(1992-),女,山西寿阳人,硕士研究生,研究领域:量子光学与激光技术。

【1】Jurgen A,Eden F,Dmitry K,et al.Quantum Memory for Squeezed Light[J]. Phys Rev Lett,2008,100(9): 093602.DOI:10.1103/PhysRevLeft.100.0903602.

【2】Dantan A,Pinard M. Quantum-state Transfer Between Fields and Atoms in Electromagnetically Induced Transparency[J]. Phys Rev A,2004,69(4): 043810.DOI:10.1103/PhysRevLeft.100.0903602.

【3】Furusawa A,Serensen J L,Braunstein S L,et al.Unconditional Quantum Teleportation[J]. Science,1998,282(5389):706-709.DOI:10.1126/Science,282.5389.706.

【4】Jing J T,Zhang J,Yan Y,et al.Experimental Demonstration of Tripartite Entanglement and Controlled Dense Coding for Continuous Variables[J]. Phys Rev Lett,2003,90 (16):167903.DOI:10.1103/PhysRevLeft.90.167903.

【5】Braunstein S L and Loock P V. Quantum Information With Continuous Variables[J]. Rev Mod Phys,2005,77: 513-577.DOI:10.1109/IQEC.2000.907786.

【6】Su X L,Hao S H,Deng X W,et al.Gate Sequence for Continuous Variable One-way Quantum Computation[J]. Nat Commun,2013,4: 2828.DOI:10.1038/ncomms3828.

【7】The LIGO Scientific Collaboration. A Gravitational Wave Observatory Operating Beyond the Quantum Shot-noise Limit[J]. Nat Phys,2011,7(12): 962-965.DOI:10.1088 10264-9381/27119/199602.

【8】Caves C M. Quantum-mechanical Noise in an Interferometer[J]. Phys Rev D,1981,23: 1693.DOI:10.1103/PhysRevp.23.1693.

【9】Grangier P,Slusher R,Yurke B,et al.Squeezed-Light-Enhanced Polarization Interferometer[J]. Phys Rev Lett,1987,59:2153.DOI:10.1103/PhysRevLeft.59,278.

【10】Xiao M,Wu L A,Kimble H J. Precision Measurement Beyond the Shot-Noise Limit[J]. Phys Rev Lett,1987,59(3): 278-281.DOI:10.1103/PhysRevLeft.59.278.

【11】Yonezawa H,Nakane D,Wheatley T A,et al.Quantum-Enhanced Optical Phase Tracking[J]. Science,2012,337: 1514.DOI:10.1126/Science.1225258.

【12】Sun H X,Liu K,Liu Z L,et al.Small-Displacement Measurements Using High-Order Hermite-Gauss Modes[J]. Appl Phys Lett,2014,104: 121908.DOI:http:∥dx.doi.org/10.106./1.4869819.

【13】Goda K,Miyakawa O,Mikhailov E E,et al.A Quantum-Enhanced Prototype Gravitational-Wave Detector[J]. Nat Phys,2008,4:472-476.DOI:10.10381/nphys920.

【14】The LIGO Scientific Collaboration. Enhanced Sensitivity of the LIGO Gravitational Wave Detector by Using Squeezed States of Light[J]. Nat Photonics,2008,7:613-619.DOI:10.1038/nphoton.2013.177.

【15】Wu L A,Xiao M,Kimble H J. Squeezed States of Light from an Optical Parametric Oscillator[J]. J Opt Soc Am B,1987,4(10): 1465-1475.https:∥doi. org/10.13641 JOSAB. 4. 001465.

【16】Takeno Y,Yukawa M,Yonezawa H,et al.Observation of 9 dB Quadrature Squeezing With Improvement of Phase Stability in Homodyne Measurement[J]. Opt. Express,2007,15: 4321.https:∥doi:org/10.136410E.15.004321.

【17】Vahlbruch H,Mehmet M,Chelkowski S,et al.Observation of Squeezed Light With 10 dB Quantum Noise Reduction[J]. Phys Rev Lett,2008,100: 033602.DOI:10.1103/PhysRevLeft.100.033602.

【18】Vahlbruch H,Mehmet M,Danzmann K,et al.Detection of 15 dB Squeezed States of Light and Their Application for the Absolute Calibration of Photoelectric Quantum Efficiency [J]. Phys Rev Lett,2016,117: 110801.DOI:10.1103/Phys Rev Left. 117.110801.

【19】Zhou Y Y,Jia X J,Li F,et al.Experimental Generation of 84 dB Entangled State with an Optical Cavity Involving a Wedged Type-II Nonlinear Crystal[J]. Opt Express,2015,23: 4953-4959.DOI:10.1364/OE.23. 004952.

【20】Chua S,Slagmolen B,Shaddock D A,et al.Quantum Squeezed Light in Gravitational-Wave Detectors[J]. Class Quantum Grav,2014,31: 183001.DOI:10.1088/0264-9381/31118/183001.

【21】Vahlbruch H,Chelkowski S,Hage B,et al.Coherent Control of Vacuum Squeezing in the Gravitational-Wave Detection Band[J]. Phys Rev Lett,2006,97: 011101.DOI:10.1103/PhysRevLeft.97.011101.

【22】Stefszky M,Mow-lowry C,Chua S,et al.Balanced Homodyne Detection of Optical Quantum States at Audio Band Frequencies and Below[J]. Class Quantum Grav,2012,29: 145015.DOI:10.1088/0264_9381/29/141/145015.

【23】LIGO Scientific Collaboration,Virgo Collaboration,ABBOTTBP,ABBOTTR,et al.An Upper Limit on the Stochastic Gravitational Wave Background of Cosmological Origin[J]. Nature,2009,460(7258): 990-4.DOI:10.1038/nature08278.

【24】Rowan S,Hough J,Crooks D R M. Thermal Noise and Material Issues for Gravitational Wave Detectors[J]. Phys Lett A,2005,347: 25-32.DOI:10.1109/sam.2004.1502934.

【25】Feng J X,Tian X T,Li Y M,et al.Generation of a Squeezing Vacuum at a Telecommunication Wavelength With Periodically Poled LiNbO3[J]. Appl Phys Lett,2008,92(22): 221102.DOI:http:∥dx.doi.org/10.1063∥2938053.

【26】Mehmet M,Ast S,Eberle T,et al.Squeezed Light at 1550 nm With a Quantum Noise Reduction of 123 dB[J]. Optics Expres,2011,19(25): 25763-25772.DOI:10.1364/OE.19. 025763.

引用该论文

YAO Li-ting,FENG Jin-xia,GAO Ying-hao,ZHANG Kuan-shou. Generation of a Low-frequency Squeezed States at Telecommunication Wavelength[J]. Acta Sinica Quantum Optica, 2017, 23(2): 99-104

要立婷,冯晋霞,高英豪,张宽收. 光通信波段低频压缩态光场的实验制备[J]. 量子光学学报, 2017, 23(2): 99-104

被引情况

【1】史少平,杨文海,郑耀辉,王雅君. 压缩态光场制备中的单频激光源噪声分析. 中国激光, 2019, 46(7): 701009--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF