首页 > 论文 > 光学学报 > 37卷 > 7期(pp:722001--1)

基于虚拟双球面的仿生复眼系统标定

Calibration of Artificial Compound Eye System Based on Virtual Double Spherical Surfaces

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了实现对空间目标的探测定位,对设计的仿生复眼系统的标定进行研究。介绍了复眼装置结构,根据复眼成像特点设计搭建了可以构建全视场靶标的标定平台,提出一种基于双球面虚拟靶标的标定方法。建立了复眼标定和定位过程中可以统一众多子眼坐标系的数学模型,详细描述了多通道同时标定或定位的具体步骤,其中包括系统的合理调节、靶点分布均匀性优化以及非线性映射方法选取等过程,同时通过计算机控制可以实现标定过程的自动化运行。在两个球面位置上建立了各子眼通道图像光斑点坐标和靶点角度之间的非线性映射关系。针对提出的标定方法进行了验证实验。实验结果显示,标定后的复眼系统在60°视场内目标定位相对误差优于0.5%,定位角度均方根误差为1.96 mrad。提出的方法能够满足设计复眼的标定要求,且标定后的复眼能够很好地完成对空间目标的测量。

Abstract

In order to achieve detection and positioning of spatial objects, calibration of the designed artificial compound eye system is studied. The structure of the compound eye device is introduced. A calibration platform is designed and built based on the imaging characteristics of the compound eye, which can construct the full-field-of-view calibration target. A calibration method based on virtual targets of two spherical surfaces is proposed. A mathematical model is established to unify various sub-eye coordinate systems in the process of compound eye calibration and positioning. The specific steps of simultaneous multi-channel calibration or localization are described, in detail including the reasonable adjustment of system, the uniformity optimization of target distribution and the selection of the nonlinear mapping method and so on. Automatic operation of the calibration process can be achieved by computer control. Then, the nonlinear mapping relationship between the coordinates of the image spots and the target angle is established at two spherical surface positions. Finally, a verification experiment is carried out for the proposed calibration method. The experimental results show that the relative error of the target positioning is lower than 0.5% in the field of view of 60° after calibration of the compound eye system, and the root mean square error of the positioning angle is 1.96 mrad. The proposed method can satisfy the calibration requirements of the designed compound eye, and the calibrated compound eye can achieve measurement of the space object well.

投稿润色
补充资料

中图分类号:TP391

DOI:10.3788/aos201737.0722001

所属栏目:光学设计与制造

基金项目:国家自然科学基金(61275011,51405126)

收稿日期:2017-01-09

修改稿日期:2017-03-27

网络出版日期:--

作者单位    点击查看

何建争:中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230027
简慧杰:中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230027
马孟超:合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009
王克逸:中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230027

联系人作者:何建争(jzhe@mail.ustc.edu.cn)

备注:何建争(1991-),男,硕士研究生,主要从事机器视觉方面的研究。

【1】Gong Xianwei, Yu Weixing, Zhang Hongxin, et al. Progress in design and fabrication of artificial compound eye optical systems[J]. Chinese Optics, 2013, 6(1): 34-45.
巩宪伟, 鱼卫星, 张红鑫, 等. 仿生复眼成像系统设计与制作的研究进展[J]. 中国光学, 2013, 6(1): 34-45.

【2】Floreano D, Pericet-Camara R, Viollet S, et al. Miniature curved artificial compound eyes[C]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(23): 9267-9272.

【3】Tsai R Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journal on Robotics and Automation, 1987, 3(4): 323-344.

【4】Zhang Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.

【5】Chen N Y, Birk J R, Kelley R B. Estimating workpiece pose using the feature points method[J]. IEEE Transactions on Automatic Control, 1980, 25(6): 1027-1041.

【6】Xu Song, Sun Xiuxia, Liu Xi, et al. Geometry method of camera self-calibration based on a rectangle[J]. Acta Optica Sinica, 2014, 34(11): 1115002.
徐 嵩, 孙秀霞, 刘 希, 等. 基于矩形的摄像机自标定几何方法[J]. 光学学报, 2014, 34(11): 1115002.

【7】Guo Fang, Wang Keyi, Wu Qinglin. Development of target positioning instrument with multi-channels and large field of view[J]. Optics and Precision Engineering, 2013, 21(1): 26-33.
郭 方, 王克逸, 吴青林. 多通道大视场目标定位仪的研制[J]. 光学 精密工程, 2013, 21(1): 26-33.

【8】Ma M C, Guo F, Cao Z, et al. Development of an artificial compound eye system for three-dimensional object detection[J]. Applied Optics, 2014, 53(6): 1166-1172.

【9】Zhang Li. Structure design of antenna pedestal and shaft precision analysis[D]. Xi′an: Xidian University, 2012.
张 力. 天线座结构设计与轴系精度分析[D]. 西安: 西安电子科技大学, 2012.

【10】Ren Shunqing, Gao Kang, Zhao Hongbo. Measurement method of perpendicularity, axis intersection, alignment error of five-axis simulator[J]. Journal of Harbin Institute of Technology, 2015, 47(10): 1-6.
任顺清, 高 亢, 赵洪波. 五轴台垂直度、相交度、对准误差的测试方法[J]. 哈尔滨工业大学学报, 2015, 47(10): 1-6.

【11】Eric L A, Timothy J W, Edward R R, et al. Method of constrained global optimization[J]. Physical Review Letters, 1994, 72(17): 2671-2674.

【12】Johann S B, Peter J G. Distributing many points on spheres: minimal energy and designs[J]. Journal of Complexity, 2015, 31(3): 293-326.

【13】Son H S, Marks D L, Hahn J,et al. Design of a spherical focal surface using close-packed relay optics[J]. Optics Express, 2011, 19(17): 16132-16138.

【14】Ke Yinglin, Zhou Rurong. A new triangulation algorithm for 3D scattered points[J]. Journal of Computer Aided Design and Computer Graphics, 1994, 6(4): 241-248.
柯映林, 周儒荣. 实现3D离散点优化三角划分的三维算法[J]. 计算机辅助设计与图形学学报, 1994, 6(4): 241-248.

【15】Zhang Jing. Interpolation of point clouds data based on Kriging interpolation[D]. Xi′an: Chang′an University, 2014.
张 靖. 基于克里金算法的点云数据插值研究[D]. 西安: 长安大学, 2014.

【16】Xu Lu, Zhao Haitao, Sun Shaoyuan. Monocular infrared image depth estimation based on deep convolutional neural networks[J]. Acta Optica Sinica, 2016, 36(7): 0715002.
许 路, 赵海涛, 孙韶媛. 基于深层卷积神经网络的单目红外图像深度估计[J]. 光学学报, 2016, 36(7): 0715002.

引用该论文

He Jianzheng,Jian Huijie,Ma Mengchao,Wang Keyi. Calibration of Artificial Compound Eye System Based on Virtual Double Spherical Surfaces[J]. Acta Optica Sinica, 2017, 37(7): 0722001

何建争,简慧杰,马孟超,王克逸. 基于虚拟双球面的仿生复眼系统标定[J]. 光学学报, 2017, 37(7): 0722001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF