首页 > 论文 > 光学学报 > 37卷 > 7期(pp:711004--1)

基于迭代支撑检测的生物发光断层成像

Bioluminescence Tomography Based on Iterative Support Detection

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

生物发光断层成像(BLT)是一种高灵敏度、高特异性的光学分子影像技术,可根据探测到的生物体表光强来重建发光光源在生物体内的三维分布。由于生物体表面测得的光强信息有限,光源重建面临巨大的挑战。为了在有限的测量条件下获得更精确的重建光源,结合BLT中光源稀疏分布的特征,将重建问题转化为L1范数优化问题,并采用迭代支撑检测(ISD)算法实现快速重建,该算法交替执行支撑集检测和信号重构两个模块,直至重建精度达到要求。为了评估ISD算法的光源定位能力,设计数字鼠仿真实验,并与三种典型的稀疏重建算法比较。仿真结果表明ISD算法对于单光源和双光源目标均可以实现准确的重建。

Abstract

Bioluminescence tomography (BLT) is an optical molecular imaging technique with high sensitivity and specificity, and it can provide three-dimensional distribution of the internal source according to the detected boundary light intensity. However, the source reconstruction with limited measurements is a challenging problem. We take advantage of the sparsity feature of bioluminescence source and formulate the BLT source reconstruction into an L1 norm minimization problem. The iterative detection support (ISD) algorithm is used to realize more accurate and faster reconstruction with limited data. The reconstruction algorithm alternatively runs two operations, i.e., support detection and signal reconstruction, until the solution meets the accuracy requirement. Simulations based on a digital mouse are designed to assess the location ability of the ISD method, and the result is compared with those of other three representative sparse algorithms. The simulation results show that the ISD method can achieve accurate reconstruction in both single-source and double-source cases.

投稿润色
补充资料

中图分类号:TP319;Q632

DOI:10.3788/aos201737.0711004

所属栏目:成像系统

基金项目:国家自然科学基金(61401264)、陕西省自然科学基金(2015JM6322)、中央高校基本科研业务费专项资金(GK201603025)

收稿日期:2017-01-20

修改稿日期:2017-03-10

网络出版日期:--

作者单位    点击查看

余景景:陕西师范大学物理学与信息技术学院, 陕西 西安 710119
田 晶:陕西师范大学物理学与信息技术学院, 陕西 西安 710119
王海玉:陕西师范大学物理学与信息技术学院, 陕西 西安 710119
李启越:陕西师范大学物理学与信息技术学院, 陕西 西安 710119

联系人作者:余景景(yujj@snnu.edu.cn)

备注:余景景(1977-),女,博士,副教授,主要从事智能信息处理、光学分子影像方面的研究。

【1】Qin C H, Feng J C, Zhu S P, et al. Recent advances in bioluminescence tomography: methodology and system as well as application[J]. Laser & Photonics Reviews, 2014, 8(1): 94-114.

【2】Darne C, Lu Y, Sevick-Muraca E M. Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update[J]. Physics in Medicine and Biology, 2014, 59(1): R1-R64.

【3】Yu J J, Zhang B, Iordachita I I, et al. Systematic study of target localization for bioluminescence tomography guided radiation therapy[J]. Medical Physics, 2016, 43(5): 2619-2629.

【4】Cong W X, Wang G, Kumar D, et al. Practical reconstruction method for bioluminescence tomography[J]. Optics Express, 2005, 13(18): 6756-6771.

【5】Lu Y, Zhang X, Douraghy A, et al. Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information[J]. Optics Express, 2009, 17(10): 8062-8080.

【6】Naser M A, Patterson M S. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties[J]. Biomedical Optics Express, 2010, 1(2): 512-526.

【7】Dehghani H, Davis S C, Pogue B W. Spectrally resolved bioluminescence tomography using the reciprocity approach[J]. Medical Physics, 2008, 35(11): 4836-4871.

【8】Naser M A, Patterson M S. Bioluminescence tomography using eigenvectors expansion and iterative solution for the optimized permissible source region[J]. Biomedical Optics Express, 2011, 2(11): 3179-3193.

【9】Yu Jingjing, Wang Haiyu, Li Qiyue. Single-view based multispectral bioluminescence tomography with iteratively shrinking permissible region[J]. Acta Optica Sinica, 2016, 36(12): 1211001.
余景景, 王海玉, 李启越. 结合迭代收缩可行域的单视图多光谱生物发光断层成像[J]. 光学学报, 2016, 36(12): 1211001.

【10】Yu J J, Liu F, Wu J, et al. Fast source reconstruction for bioluminescence tomography based on sparse regularization[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(10): 2583-2586.

【11】Guo W, Jia K B, Zhang Q, et al. Sparse reconstruction for bioluminescence tomography based on the semigreedy method[J]. Computational and Mathematical Methods in Medicine, 2012, 2012: 494808.

【12】Gao H, Zhao H K. Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization[J]. Optics Express, 2010, 18(3): 1854-1871.

【13】Chen X L, Yang D F, Zhang Q T, et al. L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography[J]. Journal of Applied Physics, 2014, 115(18): 184702.

【14】Zhang Q T, Zhao H, Chen D F, et al. Source sparsity based primal-dual interior-point method for three-dimensional bioluminescence tomography[J]. Optics Communications, 2011, 284(24): 5871-5876.

【15】Hu Y F, Liu J, Leng C C, et al. Lp regularization for bioluminescence tomography based on the split bregman method[J]. Molecular Imaging and Biology, 2016, 18(6): 830-837.

【16】He X W, Liang J M, Wang X R, et al. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method[J]. Optics Express, 2010, 18(24): 24825-24841.

【17】Wang Y L, Yin W T. Sparse signal reconstruction via iterative support detection[J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 462-491.

【18】Cong A X, Wang G. A finite-element-based reconstruction method for 3D fluorescence tomography[J]. Optics Express, 2005, 13(24): 9847-9857.

【19】Malioutov D M, Cetin M, Willsky A S. Homotopy continuation for sparse signal representation[C]. IEEE International Conference on Acoustics, 2005: 733-736.

【20】Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.

【21】Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.

【22】Yang J, Zhang Y. Alternating direction algorithms for l1-problems in compressive sensing[J]. SIAM Journal on Scientific Computing, 2011, 33(1): 250-278.

【23】Li Hanqing, Guo Qing, Li Qingzhong. Distributed compressive spectrum sensing algorithm based on iterative support detection[J]. Journal of South China University of Technology (Natural Science Edition), 2013, 41(1): 64-69.
李含青, 郭 庆, 李庆忠. 基于迭代支持检测的分布式压缩频谱感知算法[J]. 华南理工大学学报(自然科学版), 2013, 41(1): 64-69.

【24】Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121.

【25】Dogdas B, Stout D, Chatziioannou A F, et al. Digimouse: a 3D whole body mouse atlas from CT and cryosection data[J]. Physics in Medicine and Biology, 2007, 52(3): 577-587.

【26】He X W, Hou Y B, Chen D F, et al. Sparse regularization-based reconstruction for bioluminescence tomography using a multilevel adaptive finite element method[J]. International Journal of Biomedical Imaging, 2011, 2011: 203537.

【27】Kaipio J, Somersalo E. Statistical inverse problems: discretization, model reduction and inverse crimes[J]. Journal of Computational and Applied Mathematics, 2007, 198(2): 493-504.

引用该论文

Yu Jingjing,Tian Jing,Wang Haiyu,Li Qiyue. Bioluminescence Tomography Based on Iterative Support Detection[J]. Acta Optica Sinica, 2017, 37(7): 0711004

余景景,田 晶,王海玉,李启越. 基于迭代支撑检测的生物发光断层成像[J]. 光学学报, 2017, 37(7): 0711004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF