首页 > 论文 > 光学学报 > 37卷 > 7期(pp:732001--1)

飞秒光学脉冲电场包络一阶时域微分实验研究

First-Order Time Differentiation Experiment of Femtosecond Optical Pulse Electric Field Envelope

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光学脉冲的时域微分技术在时空测量领域有着重要应用,利用微分脉冲可使时空测量的精度达到或超越标准量子极限。分别利用双折射晶体和傅里叶脉冲整形系统两种方法对中心波长为813 nm、脉宽为130 fs的脉冲电场包络进行了一阶微分实验研究。利用双折射晶体得到的脉冲电场包络一阶微分能量转换效率为0.36%,电场强度的频谱分布只在中心频率附近的光谱半峰全宽范围内可与理论值较好地吻合,重合度达到91.36%,距离中心频率越远,与理论值差距越大。利用傅里叶脉冲整形系统得到的脉冲电场包络一阶微分能量转换效率达到11.10%,在空间光调制器的有效调制范围内,电场强度与理论值的重合度超过98.37%。与基于双折射晶体的脉冲微分方法相比,基于傅里叶脉冲整形系统的脉冲微分方法具有更高的能量转换效率,与理论值吻合的光谱范围更大,且能方便地产生任意阶数的微分脉冲,能更好地满足高精度时间同步领域的应用需求。

Abstract

The light pulse differentiation technology in time domain has shown important applications in the field of time-space metrology, and it makes the measurement precision reach or beyond the standard quantum limit. In this paper, a first-order differentiation experiment of the pulse electric field envelope with a central wavelength of 813 nm and pulse duration of 130 fs has been implemented based on the birefringent crystal and the Fourier pulse shaping system separately. Based on birefringent crystals, the pulse electric field envelop is achieved with energy conversation efficiency of 0.36%. By comparing the spectral distribution of the shaped pulse with the theoretical value, we find that a relatively good overlap can be seen within the full wavelength half maximum range near the central wavelength with an overlap rate of 91.36%, and the difference between them increases as the distance from the central frequency increases. For the first-order differentiated pulse electric field envelope generated by the Fourier pulse shaping system, the energy conversation efficiency rises to 11.10%. Meanwhile, its overlap rate with the theoretical value is over 98.37% within the effective modulation range of the utilized spatial light modulator. Compared with the former method, the latter can achieve much higher energy conversation efficiency and larger overlap spectral range with the theoretical value. Furthermore, as it can be used to achieve random-order differentiated pulses, the Fourier pulse shaping system can meet the demand of high-precision time synchronization applications.

投稿润色
补充资料

中图分类号:O438

DOI:10.3788/aos201737.0732001

所属栏目:超快光学

基金项目:国家自然科学基金(91336108,11273024,91636101,Y133ZK1101)、中国科学院科研装备研制项目、中组部“青年拔尖人才” 支持计划、中国科学院前沿科学重点研究项目 (QYZDB-SSWSLH007)

收稿日期:2017-01-22

修改稿日期:2017-03-22

网络出版日期:--

作者单位    点击查看

周聪华:中国科学院国家授时中心时间频率基准实验室, 陕西 西安 710600中国科学院大学, 北京 100049
李百宏:中国科学院国家授时中心时间频率基准实验室, 陕西 西安 710600西安科技大学理学院, 陕西 西安 710054
项 晓:中国科学院国家授时中心时间频率基准实验室, 陕西 西安 710600中国科学院大学, 北京 100049
王少峰:中国科学院国家授时中心时间频率基准实验室, 陕西 西安 710600中国科学院大学, 北京 100049
董瑞芳:中国科学院国家授时中心时间频率基准实验室, 陕西 西安 710600中国科学院大学, 北京 100049
刘 涛:中国科学院国家授时中心时间频率基准实验室, 陕西 西安 710600中国科学院大学, 北京 100049
张首刚:中国科学院国家授时中心时间频率基准实验室, 陕西 西安 710600中国科学院大学, 北京 100049

联系人作者:周聪华(zchua1992@gmail.com)

备注:周聪华(1992-),男,硕士研究生,主要从事脉冲微分整形方面的研究。

【1】Nicholson T L, Campbell S L, Hutson R B, et al. Systematic evaluation of an atomic clock at 2×10-18 total uncertainty[J]. Nature Communications, 2015, 6: 6896.

【2】Jaekel M T, Reynaud S. Space-time localisation with quantum fields[J]. Physics Letters A, 1996, 220(1/2/3): 10-16.

【3】Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced positioning and clock synchronization[J]. Nature, 2001, 412(6845): 417-419.

【4】Ni W T. Quantum-mechanical noise in an interferometer: Intrinsic uncertainty vs measurement uncertainty (A)[J]. Physical Review D: Particles & Fields, 1986, 3(10): 3002-3007.

【5】Jaekel M T, Reynaud S. Quantum limits in interferometric measurements[J]. Europhysics Letters, 1990, 13(4): 301-306.

【6】Liu Miao, Yang Xueyou, Liu Changjie. Phase shift laser range finding with a novel quadrature modulation method and system implementation[J]. Chinese J Lasers, 2012, 39(2): 0208004.
刘 邈, 杨学友, 刘常杰. 正交混频相位式激光测距方法与系统实现[J]. 中国激光, 2012, 39(2): 0208004.

【7】Lamine B, Fabre C, Treps N. Quantum improvement of time transfer between remote clocks[J]. Physical Review Letters, 2008, 101(12): 123601.

【8】Jian P, Pinel O, Fabre C, et al. Real-time displacement measurement immune from atmospheric parameters using optical frequency combs[J]. Optics Express, 2012, 20(24): 27133-27146.

【9】Preciado M A, Muriel M A. Design of an ultrafast all-optical differentiator based on a fiber Bragg grating in transmission[J]. Optics Letters, 2008, 33(21): 2458-2460.

【10】Park Y, Azaa J, Slavík R. Ultrafast all-optical first- and higher-order differentiators based on interferometers[J]. Optics Letters, 2007, 32(6): 710-712.

【11】Labroille G, Pinel O, Treps N, et al. Pulse shaping with birefringent crystals: A tool for quantum metrology[J]. Optics Express, 2013, 21(19): 21889-21896.

【12】Liao S S, Ding Y H, Dong J J, et al. Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper[J]. Optics Express, 2015, 23(9): 12161-12173.

【13】Weiner A M. Femtosecond pulse shaping using spatial light modulators[J]. Review of Scientific Instruments, 2000, 71(5): 1929-1960.

【14】Weiner A M. Ultrafast optical pulse shaping: A tutorial review[J]. Optics Communications, 2011, 284(15): 3669-3692.

【15】Weiner A M, Heritage J P, Salehi J A. Encoding and decoding of femtosecond pulses[J]. Optics Letters, 1988, 13(4): 300-302.

【16】Weiner A M, Nelson K A. Femtosecond pulse sequences used for optical manipulation of molecular motion[J]. Science, 1990, 247(4948): 1317-1319.

【17】Chu Saisai, Li Hongyun, Wang Shufeng, et al. Development of ultrashort laser pulse shaping technique and its applications in micro- and nano-optical systems[J]. Acta Optica Sinica, 2016, 36(10): 1026007.
褚赛赛, 李洪云, 王树峰, 等. 激光脉冲整形在微纳光学系统中的应用研究进展[J]. 光学学报, 2016, 36(10): 1026007.

【18】Lepetit L, Chériaux G, Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy[J]. Journal of the Optical Society of America B, 1995, 12(12): 2467-2474.

【19】Dorrer C, Salin F. Characterization of spectral phase modulation by classical and polarization spectral interferometry[J]. Journal of the Optical Society of America B, 1998, 15(8): 2331-2337.

【20】Song Youjian, Hu Minglie, Wang Yanzhi, et al. Studies on mode-locking features of sub-10-fs Ti: Sapphire oscillator with domestic chirped mirrors for intra-cavity dispersion compensation[J]. Acta Optica Sinica, 2010, 30(11): 3215-3220.
宋有建, 胡明列, 王胭脂, 等. 基于国产啁啾镜色散补偿的近10 fs钛宝石激光器锁模特性的研究[J]. 光学学报, 2010, 30(11): 3215-3220.

【21】Zhang Liuyang, Jin Haiyang, Qu Yuqiu, et al. Optical design of ultrashort pulses compressor based on prism pairs[J]. Laser & Optoelectronics Progress, 2016, 53(10): 102202.
张留洋, 金海洋, 曲玉秋, 等. 基于棱镜对的超短脉冲压缩器的光学设计[J]. 激光与光电子学进展, 2016, 53(10): 102202.

【22】Lozovoy V V, Pastirk I, Dantus M. Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation[J]. Optics Letters, 2004, 29(7): 775-777.

【23】Xin Jingtao, Gao Chunqing, Li Chen, et al. Propagation of helical beams through amplitude diffractive optical elements and the measurement of topological charge[J]. Acta Physica Sinica, 2012, 61(17): 174202.
辛璟焘, 高春清, 李 辰, 等. 螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量[J]. 物理学报, 2012, 61(17): 174202.

【24】Vaughan J, Feurer T, Stone K W, et al. Analysis of replica pulses in femtosecond pulse shaping with pixelated devices[J]. Optics Express, 2006, 14(3): 1314-1328.

引用该论文

Zhou Conghua,Li Baihong,Xiang Xiao,Wang Shaofeng,Dong Ruifang,Liu Tao,Zhang Shougang. First-Order Time Differentiation Experiment of Femtosecond Optical Pulse Electric Field Envelope[J]. Acta Optica Sinica, 2017, 37(7): 0732001

周聪华,李百宏,项 晓,王少峰,董瑞芳,刘 涛,张首刚. 飞秒光学脉冲电场包络一阶时域微分实验研究[J]. 光学学报, 2017, 37(7): 0732001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF