首页 > 论文 > 光学学报 > 37卷 > 7期(pp:717001--1)

基于随机变量交替方向乘子法的荧光分子断层成像

Fluorescence Molecular Tomography Using a Stochastic Variant of Alternating Direction Method of Multipliers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

增加测量信息可以有效降低荧光分子断层成像(FMT)重建的病态性,但随着数据增多,重建耗时也会显著增加。为了降低FMT重建的病态性和提升大规模数据集下的重建效率,结合对偶坐标下降法(DCA)和交替方向乘子法(ADMM)提出了一种改进的随机变量的交替方向乘子法重建优化方法。在原始ADMM方法的基础上,增加了一个随机更新规则,在每次迭代中只需要一个或者几个样本,就可加速收敛,使目标函数快速得到最优解,从而达到快速重建的效果。设计了数字鼠仿真实验和真实鼠实验,实验结果表明,所提方法在保证FMT重建图像精度的同时,显著提高了重建效率。

Abstract

Increasing measurement information can effectively reduce the ill-posedness of the fluorescence molecular tomography(FMT) reconstruction. With the increase of data, the time of FMT reconstruction will increase significantly. In order to reduce the ill-posedness of FMT reconstruction and enhance reconstruction efficiency under big data sets, a reconstruction method of improved stochastic variant of alternating direction method of multipliers (ADMM) is proposed by combining dual coordinate ascent (DCA) method and ADMM method. The proposed method offers a stochastic update rule base on the original ADMM method where each iteration requires only one or few sample observations, thus gives speed up of convergence, so that the objective function can get the optimal solution rapidly and achieve the effect of rapid reconstruction. Simulation experiments of digital mouse and real mouse experiment show that the proposed method can guarantee FWT reconstruction images′s accuracy and improve reconstruction efficiency.

投稿润色
补充资料

中图分类号:TP391;Q632

DOI:10.3788/aos201737.0717001

所属栏目:医用光学与生物技术

基金项目:国家自然科学基金(61640418,61601363)

收稿日期:2016-02-08

修改稿日期:2016-03-23

网络出版日期:--

作者单位    点击查看

侯榆青:西北大学信息科学与技术学院, 陕西 西安 710127
金明阳:西北大学信息科学与技术学院, 陕西 西安 710127
贺小伟:西北大学信息科学与技术学院, 陕西 西安 710127
张 旭:西北大学信息科学与技术学院, 陕西 西安 710127

联系人作者:侯榆青(houyuqing@nwu.edu.cn)

备注:侯榆青(1963-),女,硕士,教授,主要从事信号处理、医学图像处理和数字信号处理器应用技术等方面的研究。

【1】Mclaughlin W, Vizard D. Kodak in vivo imaging system: precise coregistration of molecular imaging with anatomical X-ray imaging in animals[J]. Nature Methods Application Notes, 2006: 26-28.

【2】Ntziachristos V, Tung C H, Bremer C, et al. Fluorescence molecular tomography resolves protease activity in vivo[J]. Nature Medicine, 2002, 8(7): 757-760.

【3】Dong Fang, Hou Yuqing, Yu Jingjing, et al. Fluorescence molecular tomography via greedy method combined with region-shrinking strategy[J]. Laser & Optoelectronics Progress, 2016, 53(1): 011701.
董 芳, 侯榆青, 余景景, 等. 结合区域收缩和贪婪策略的荧光分子断层成像[J]. 激光与光电子学进展, 2016, 53(1): 011701.

【4】Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2011, 73(3): 273-282.

【5】Efron B, Hastie T, Johnstone I, et al. Least angle regression[J]. Annals of Statistics, 2004, 32(2): 407-499.

【6】Nesterov Y. Introductory lectures on convex optimization: a basic course[M]. [S.l.]: Springer Science & Business Media, 2013.

【7】Nesterov Y. Smooth minimization of non-smooth functions[J]. Mathematical Programming, 2005, 103(1): 127-152.

【8】Chan R H, Tao M, Yuan X. Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers[J]. SIAM Journal on Imaging Sciences, 2013, 6(1): 680-697.

【9】Becker S R, Candès E J, Grant M C. Templates for convex cone problems with applications to sparse signal recovery[J]. Mathematical Programming Computation, 2011, 3(3): 165-218.

【10】Beck A, Teboulle M. Afast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.

【11】Goldstein T, Donoghue, Setzer S, et al. Fast alternating direction optimization methods[J]. Siam Journal on Imaging Sciences, 2014, 7(3): 1588-1623.

【12】Suzuki T. Dualaveraging and proximal gradient descent for online alternating direction multiplier method[C]. Proceedings of the 30th International Conference on Machine Learning (ICML-13), Atlanta, 2013, 28(1): 392-400.

【13】Klose A D, Ntziachristos V, Hielscher A H. The inverse source problem based on the radiative transfer equation in optical molecular imaging[J]. Journal of Computational Physics, 2005, 202(1): 323-345.

【14】Chu M, Vishwanath K, Klose A D, et al. Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations[J]. Physics in Medicine & Biology, 2009, 54(8): 2493.

【15】Guo H, Hou Y, He X, et al. Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation[J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1350057.

【16】Tsaig Y, Donoho D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549-571.

【17】Friedman J, Hastie T, Hfling H, et al. Pathwise coordinate optimization[J]. The Annals of Applied Statistics, 2007, 1(2): 302-332.

【18】Guo Hongbo, He Xiaowei, Hou Yuqing, et al. Fluorescence molecular tomography based on nonconvex sparse regularization[J]. Acta Optica Sinica, 2015, 35(7): 0717001.
郭红波, 贺小伟, 侯榆青, 等. 基于非凸稀疏正则的荧光分子断层成像[J]. 光学学报, 2015, 35(7): 0717001.

【19】Ren S H, Hu H H, Li G, et al. Multi-atlas registration and adaptive hexahedral voxel discretization for fast bioluminescence tomography[J]. Biomedical Optics Express, 2016, 7(4): 1549-1560.

【20】Cai C, Zhang L, Zhang J, et al. Direct reconstruction method for time-domain fluorescence molecular lifetime tomography[J]. Optics Letters, 2015, 40(17): 4038-4041.

引用该论文

Hou Yuqing,Jin Mingyang,He Xiaowei,Zhang Xu. Fluorescence Molecular Tomography Using a Stochastic Variant of Alternating Direction Method of Multipliers[J]. Acta Optica Sinica, 2017, 37(7): 0717001

侯榆青,金明阳,贺小伟,张 旭. 基于随机变量交替方向乘子法的荧光分子断层成像[J]. 光学学报, 2017, 37(7): 0717001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF