首页 > 论文 > 光学学报 > 37卷 > 7期(pp:720001--1)


Calculation of Optical Cross Section Areas of Spatial Objects Based on OpenGL Picking Technique

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文


空间目标光学横截面积(OCSA)的准确计算是空间目标特性分析及识别的重要基础和前提之一。针对面元网格法计算OCSA实时性差,计算机图形学方法对材质的双向反射分布函数(BRDF)描述能力弱等问题,提出了一种基于OpenGL拾取技术的复杂空间目标OCSA计算方法。通过OpenGL拾取技术实现面元的一次遮挡判断,再基于改进Z缓冲技术实现面元的二次遮挡判断,在实现计算实时性的基础上保留了面元的详细信息,使高精度BRDF模型应用及OCSA精确计算得以开展。设计了嵌套式圆柱体和实际卫星模型并计算了其OCSA值,其中嵌套圆柱体OCSA的计算误差小于0.08%,在普通计算机上运行的平均耗时小于0.01 s,对卫星OCSA的计算平均耗时小于0.1 s,验证了本文方法的正确性和实时性。


The accurate optical cross section areas (OCSA) calculation of spatial objects is an important foundation and prerequisite for the analysis and recognition of spatial object characteristics. Aiming at the problems of the poor real-time performance of the grid model used in the faceting method and the weak ability for the description of bidirectional-reflectance-distribution-function (BRDF) of material by using the computer graphics method, an OCSA calculation method for complex space objects based on the OpenGL picking technique is proposed. The primary occlusion judgment of facets is realized by the OpenGL picking technique, and the second occlusion judgment between facets is realized based on the improved Z buffering technique. Therefore, the detailed information of facets is preserved without loss of real-time performance, which makes the application of precise BRDF model and the accurate calculation of OCSA possible. One nested cylinder and one satellite model are designed, and their OCSA value is calculated. The maximum OCSA error of the nested cylinder is less than 0.08% and the average time consumption on a general computer is less than 0.01 s. The average time consumption of OCSA for a satellite is less than 0.1 s. The results verify the correctness and real-time performance of the proposed method.









作者单位    点击查看

徐灿:装备学院航天装备系, 北京 101416
张雅声:装备学院航天装备系, 北京 101416
李 鹏:装备学院研究生管理大队, 北京 101416
李纪莲:装备学院航天装备系, 北京 101416



【1】Han Yi, Sun Huayan. Advances in space target optical scattering character research[J]. Infrared and Laser Engineering, 2013, 42(3): 758-766.
韩 意, 孙华燕. 空间目标光学散射特性研究进展[J]. 红外与激光工程, 2013, 42(3): 758-766.

【2】Yuan Yan, Sun Chengming, Huang Fengzhen, et al. Modeling of ultraviolet characteristics of deep space target[J]. Acta Physica Sinica, 2011, 60(8): 089501.
袁 艳, 孙成明, 黄锋振, 等. 深空背景下空间目标紫外特性建模方法研究[J]. 物理学报, 2011, 60(8): 089501.

【3】Bao Wenzhuo, Cong Mingyu, Zhang Wei, et al. An optical characteristics calculating method based on surface mesh-creation for space targets[J]. Journal of Harbin Institute of Technology, 2010, 42(5): 710-715.
鲍文卓, 丛明煜, 张 伟, 等. 基于面元网格化的空间目标光学特性计算方法[J]. 哈尔滨工业大学学报, 2010, 42(5): 710-715.

【4】Sun Chengming, Yuan Yan, Zhang Xiubao. Modeling of infrared characteristics of deep space target[J]. Acta Physica Sinica, 2010, 59(10): 7523-7530.
孙成明, 袁 艳, 张修宝. 深空背景下空间目标红外特性建模方法研究[J]. 物理学报, 2010, 59(10): 7523-7530.

【5】Ackermann M, McGraw J, Martion J, et al. Blind search for micro satellites in LEO: Optical signatures and search strategies[C]. AMOS Technical Conference, 2003: 1-24.

【6】Lan Chaozhen. Modeling and detecting capability analysis of space-based space object optical observation system[D]. Zhengzhou: PLA Information Engineering University, 2009: 49-72.
蓝朝桢. 空间目标天基光学观测系统建模与探测能力分析[D]. 郑州: 解放军信息工程大学, 2009: 49-72.

【7】Han Y, Sun H Y, Li Y C. Fast calculation method of complex space targets’ optical cross section[J]. Applied Optics, 2013, 10(6): 4013-4019.

【8】Liu Hao, Du Xiaoping, Gou Ruixin. Apparent magnitude measurement of geosynchronous orbit space object based on Phong model[J]. Laser & Optoelectronics Progress, 2016, 53(4): 041502.
刘 浩, 杜小平, 苟瑞新. 基于Phong 模型的地球同步轨道目标视星等仿真研究[J]. 激光与光电子学进展, 2016, 53(4): 041502.

【9】Du Xiaoping, Liu Hao, Chen Hang, et al. Research of satellite shape inversion matching algorithm based on photometric characteristic[J]. Acta Optica Sinica, 2016, 36(8): 0820001.
杜小平, 刘 浩, 陈 杭, 等. 基于光度特性的卫星形状反演匹配算法研究[J]. 光学学报, 2016, 36(8): 0820001.

【10】Torrance K E, Sparrow E M. Theory for off-specular reflection from roughened surfaces[J]. Journal of the Optical Society of America, 1967, 57(9): 1105-1112.

【11】Kennedy P K, Keppler K S, Thomas R J, et al. Validation and verification of the Laser Range Safety Tool (LRST)[C]. SPIE, 2003, 4953: 143-153.

【12】Bush K, Crockett G A, Barnard C. Satellite discrimination from active and passive polarization signatures: Simulation predictions using the TASAT satellite model[C]. SPIE, 2002, 4481: 46-57.

【13】Crockett G A, Brunson R L. Visualization tool for advanced laser system development[C]. SPIE, 2002, 4724: 69-77.

【14】Bédard M D, Lévesque M, Wallace B. Measurement of the photometric and spectral BRDF of small Canadian satellites in a controlled environment[C]. AMOS Technical Conference, 2011: 1-10.

【15】Douchina N, Jolya A, Meynard T, et al. Simulation of active EO imaging system based on SE-Workbench and OSMoS software tools[C]. 5th International IR Target and Background Modeling & Simulation Workshop, 2009.

【16】Wu Zhensen, Xie Donghui, Xie Pinhua, et al. Modeling reflectance function from rough surface and algorithms[J]. Acta Optica Sinica, 2002, 22(8): 897-901.
吴振森, 谢东辉, 谢品华, 等. 粗糙表面激光散射统计建模的遗传算法[J]. 光学学报, 2002, 22(8): 897-901.

【17】Li P, Li Z, Xu C. Measuring and modeling the bidirectional reflection distribution function of space object’s surface material[C]. 3rd International Conference on Materials Engineering, Manufacturing Technology and Control, 2016, 2: 1676-1681.


Xu Can,Zhang Yasheng,Li Peng,Li Jilian. Calculation of Optical Cross Section Areas of Spatial Objects Based on OpenGL Picking Technique[J]. Acta Optica Sinica, 2017, 37(7): 0720001

徐灿,张雅声,李 鹏,李纪莲. 基于OpenGL拾取技术的空间目标光学横截面积计算[J]. 光学学报, 2017, 37(7): 0720001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF