首页 > 论文 > 光学学报 > 37卷 > 7期(pp:710003--1)

基于NSSCT的红外与可见光图像融合

A Fusion Algorithm of Infrared and Visible Image Based on NSSCT

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了克服传统图像融合结果存在对比度不足和细节缺失的缺点,提出基于非下采样剪切波-对比度变换(NSSCT)的图像融合算法。分析了图像经非下采样剪切波变换(NSST)后高频系数间的关联性与差异性,构造了高频系数方向性基本一致的NSSCT变换,保留了融合图像的高频系数细节,并提升了对比度。基于图像的低频特点,采用显著性增强方法对低频系数进行融合,通过NSSCT逆变换得到对比度提升和细节增强的融合图像。实验结果表明,在图像对比度提升与细节保留方面,本文算法比基于小波、NSST和显著性等算法具有明显优势。

Abstract

To overcome the weakness that traditional fused image cannot express the image contrast and details well, an image fusion algorithm is proposed based on non-subsampled shearlet-contrast transform (NSSCT). The correlation and diversity between different high coefficients are analyzed by non-subsampled shearlet transform (NSST), and the NSSCT is built with same orientation high coefficients, which reserves contrast and details image information. Based on image characters of lower frequency, low coefficients are fused by enhancing the salient targets of image. Fused image with higher contract and enhanced details is obtained by inverse NSSCT. Compared with several popular algorithms, such as wavelet transform, NSST and saliency map, the experimental results show that the proposed algorithm is obviously of superiority in reserving image contrast and details.

投稿润色
补充资料

中图分类号:TP391

DOI:10.3788/aos201737.0710003

所属栏目:图像处理

基金项目:国家自然科学基金(61372167,61379104)

收稿日期:2017-03-06

修改稿日期:2017-03-29

网络出版日期:--

作者单位    点击查看

吴冬鹏:空军工程大学航空航天工程学院, 陕西 西安 710038
毕笃彦:空军工程大学航空航天工程学院, 陕西 西安 710038
何林远:空军工程大学航空航天工程学院, 陕西 西安 710038
马时平:空军工程大学航空航天工程学院, 陕西 西安 710038
凡遵林:空军工程大学航空航天工程学院, 陕西 西安 710038

联系人作者:吴冬鹏(wdp_image@126.com)

备注:吴冬鹏(1993-),男,硕士研究生,主要从事图像融合方面的研究。

【1】Ghassemian H. A review of remote sensing image fusion methods[J]. Information Fusion, 2016, 32: 75-89.

【2】Li S, Kang S, Fang L, et al. Pixel-level image fusion: a survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112.

【3】Pan Yu, Zheng Yuhui, Sun Quansen, et al. An image fusion framework based on principal component analysis and total variation model[J]. Journal of Computer-Aided Design & Computer Graphics, 2011, 23(7): 1200-1210.
潘 瑜, 郑钰辉, 孙权森, 等. 基于PCA和总变差模型的图像融合框架[J]. 计算机辅助设计与图形学学报, 2011, 23(7): 1200-1210.

【4】Ma J Y, Chen C, Li C, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31: 100-109.

【5】Xu H, Wang Y, Wu Y J, et al. Infrared and multi-type images fusion algorithm based on contrast pyramid transform[J]. Infrared Physics & Technology, 2016, 78: 133-146.

【6】Pajares G, De La Cruz J M. A wavelet-based image fusion tutorial[J]. Pattern Recognition, 2004, 37(9): 1855-1872.

【7】Li S T, Yang B. Multifocus image fusion by combining curvelet and wavelet transform[J]. Pattern Recognition Letters, 2008, 29(9): 1295-1301.

【8】Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Process, 2005, 14(12): 2091-2106.

【9】Guo K, Labate D. Optimally sparse multidimensional representation using shearlets[J]. SIAM Journal on Mathematical Analysis, 2007, 39(1): 298-318.

【10】Labate D, Lim W Q, Kutyniok G. Sparse multidimensional representation using shearlets[C]. SPIE, 2005: 254-262.

【11】Easley G, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46.

【12】Hou B, Zhang X H, Xu X M, et al. SAR image despeckling based on nonsubsampled shearlet transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(3): 809-823.

【13】Chen Musheng, Cai Zhishan. Study on fusion of visual and infrared image based on NSCT[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061002.
陈木生, 蔡植善. 基于NSCT的红外与可见光图像融合方法研究[J]. 激光与光电子学进展, 2015, 52(6): 061002.

【14】Zhang B H, Lu X Q, Pei H Q, et al. A fusion algorithm for infrared and visible images based on saliency analysis and non-subsampled shearlet transform[J]. Infrared Physics & Technology, 2015, 73: 286-297.

【15】Luo X Q, Zhang Z C, Wu X J. A novel algorithm of remote sensing image fusion based on shift-invariant shearlet transform and regional selection[J]. AE-International Journal of Electronics and Communications, 2016, 70(2): 186-197.

【16】Wu Yiquan, Tao Feixiang. Multispectral and panchromatic image fusion based on improved projected gradient NMF in NSST domain[J]. Acta Optica Sinica, 2015, 35(4): 0410005.
吴一全, 陶飞翔. 改进投影梯度NMF的NSST域多光谱与全色图像融合[J]. 光学学报, 2015, 35(4): 0410005.

【17】Lai J L, Yi Y. Key frame extraction based on visual attention model[J]. Journal of Visual Communication and Image Representation, 2012, 23(1): 114-125.

【18】Bavirisetti D P, Dhuli R. Two-scale image fusion of visible and infrared images using saliency detection[J]. Infrared Physics & Technology, 2016, 76: 52-64.

【19】Zhang Libao, Zhang Jue. A new adaptive fusion method based on saliency analysis for remote sensing images[J]. Chinese J Lasers, 2015, 42(1): 0114001.
张立保, 章 珏. 基于显著性分析的自适应遥感图像融合[J]. 中国激光, 2015, 42(1): 0114001.

【20】Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.

【21】Zhu W J, Liang S, Wei Y C, et al. Saliency optimization from robust background detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014: 2814-2821.

【22】Kim J, Han D, Tai Y, et al. Salient region detection via high-dimensional color transform[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014: 883-890.

【23】Goferman S, Manor L, Tal A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915-1926.

【24】Wang Z, Bovik A. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 81-84.

【25】Piella G, Heijmans H. A new quality metric for image fusion[C]. Proceedings of the IEEE Conference on Image Processing, 2003, 3: 173-176.

【26】Qu G, Zhang D, Yan P. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38(7): 313-315.

【27】Wang Z, Bovik A, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Process, 2004, 13(4): 600-612.

引用该论文

Wu Dongpeng,Bi Duyan,He Linyuan,Ma Shiping,Fan Zunlin. A Fusion Algorithm of Infrared and Visible Image Based on NSSCT[J]. Acta Optica Sinica, 2017, 37(7): 0710003

吴冬鹏,毕笃彦,何林远,马时平,凡遵林. 基于NSSCT的红外与可见光图像融合[J]. 光学学报, 2017, 37(7): 0710003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF