首页 > 论文 > 光学学报 > 37卷 > 7期(pp:728002--1)

面向高光谱图像分类的空谱半监督局部判别分析

Spatial-Spectral Semi-Supervised Local Discriminant Analysis for Hyperspectral Image Classification

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对传统的基于特征提取的高光谱图像分类算法大多只考虑光谱信息而忽略空间信息的问题,提出了一种基于空谱半监督局部判别分析(S3ELD)和空谱最近邻 (SSNN) 分类器的高光谱图像分类算法。该算法结合高光谱图像的空间一致性,在利用标记样本的判别信息保持数据集可分性的基础上,定义空间近邻像元散度矩阵来保存像元的空间近邻结构,提出基于空谱距离的相似性度量并将其应用于局部流形结构的发现和SSNN的构建。S3ELD算法不仅能揭示数据集的局部几何关系,而且增强了光谱域同类像元和空间域近邻像元在低维嵌入空间的聚集性。结合SSNN进行分类,进一步提升了分类精度。利用PaviaU和Salinas数据集进行的实验结果表明,S3ELD算法的总体分类精度分别达到了92.51%和96.29%;与现有几种算法相比,该算法能更有效地提取出判别特征信息,并达到更高的分类精度。

Abstract

In traditional hyperspectral image classification algorithm based on feature extraction, spectral information is usually considered while spatial information is ignored. To address this problem, a hyperspectral image classification algorithm based on semi-supervised spatial-spectral local discriminant analysis (S3ELD) and spatial-spectral nearest neighbor (SSNN) classifier is proposed in this paper. Combining the spatial consistency of hyperspectral images and on the basis that the discriminant information of the labeled samples is used to maintain the separability of the data set, we define the spatial local pixel scatter matrix to preserve the spatial-domain neighborhood structures of pixel. A similarity measure method based on the spatial-spectral distance is then proposed to discover the local manifold structure and to construct SSNN. S3ELD algorithm not only reveals the local geometric relations of the data set but also enforces the compactness of the spectral-domain same class pixels and the spatial-domain local neighbor pixels in the low-dimension embedding space. Combining SSNN to classify, the classification accuracy is further enhanced. The experiments on the PaviaU and Salinas data sets show that the overall classification accuracy of S3ELD algorithm reaches 92.51% and 96.29%, respectively. Compared with several existing algorithms, the proposed algorithm can efficiently extract the information of discriminant characteristics and obtain higher classification accuracy.

投稿润色
补充资料

中图分类号:TP751.1

DOI:10.3788/aos201737.0728002

所属栏目:遥感与传感器

基金项目:国家自然科学基金青年科学基金(61401471)、中国博士后科学基金(2014M562636)

收稿日期:2017-03-09

修改稿日期:2017-03-21

网络出版日期:--

作者单位    点击查看

侯榜焕:火箭军工程大学信息工程系, 陕西 西安 710025
姚敏立:火箭军工程大学信息工程系, 陕西 西安 710025
王 榕:火箭军工程大学信息工程系, 陕西 西安 710025
张峰干:火箭军工程大学信息工程系, 陕西 西安 710025
戴定成:火箭军工程大学信息工程系, 陕西 西安 710025

联系人作者:侯榜焕(chinayouth001@aliyun.com)

备注:侯榜焕(1985-),男,博士研究生,主要从事高光谱图像处理方面的研究。

【1】Fauvel M, Tarabalka Y, Benediktsson A, et al. Advances in spectral-spatial classification of hyperspectral images[C]. Proceedings of the IEEE, 2013, 101(3): 652-675.

【2】Liu Dawei, Han Ling, Han Xiaoyong. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4): 0428001.
刘大伟, 韩 玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究[J]. 光学学报, 2016, 36(4): 0428001.

【3】Ye Zhen, Bai Lin, Nian Yongjian. Hyperspectral image classification algorithm based on Gabor feature and locality-perserving dimension reduction[J]. Acta Optica Sinica, 2016, 36(10): 1028003.
叶 珍, 白 璘, 粘永健. 基于Gabor特征与局部保护降维的高光谱图像分类算法[J]. 光学学报, 2016, 36(10): 1028003.

【4】Li Zhimin, Zhang Jie, Huang Hong, et al. Semi-supervised Laplace discriminant embedding for hyperspectral image classification[J]. Journal of Electronics & Information Technology, 2015, 37(4): 995-1001.
李志敏, 张 杰, 黄 鸿, 等. 面向高光谱图像分类的半监督Laplace鉴别嵌入[J]. 电子信息学报, 2015, 37(4): 995-1001.

【5】Bandos T, Bruzzone L, Camps-valls G. Classification of hyperspectral images with regularized linear discriminant analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 862-873.

【6】Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.

【7】Belkin M, Niyogi P.Laplacian eigenmaps and spectral techniques for embedding and clustering[C]. Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, 2001, 14(6): 585-591.

【8】He X F, Niyogi P. Locality preserving projections[C]. Proceedings of Advance in Neural Information Processing Systems, 2005, 16(1): 153-160.

【9】He X F, Cai D, Yan S C, et al. Neighborhood preserving embedding[C]. Proceedings of the 10th IEEE International Conference on Computer Vision, 2005, 2(23): 1208-1213.

【10】Cai D, He X F, Han J. Semi-supervised discriminant analysis[C]. Proceedings of the 11th IEEE International Conference on Computer Vision, 2008, 5: 1-7.

【11】Sugiyama M, Ide T, Nakajima S, et al. Semi-supervised local Fisher discriminant analysis for dimensionality reduction[J]. Machine Learning, 2010, 78(1): 36-61.

【12】Liao W, Pizurica A, Scheunder P, et al. Semisupervised local discriminant analysis for feature extraction in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 184-198.

【13】Zhou Y C, Peng J T, Chen C L P.Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1082-1095.

【14】Li J, Marpu P R, Plaza A, et al. Generalized composite kernel framework for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4816-4829.

【15】Kang X, Li S, Benediktsson J A. Spectral-spatial hyperspectral image classification with edge-preserving filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 2666-2677.

【16】Li M, Ma A D, Cai J, et al. Graph-based semi-supervised learning for spectral-spatial hyperspectral image classification[J]. Pattern Recogintion Letters, 2016, 83: 133-142.

【17】Pu H Y, Chen Z, Wang B, et al. A novel spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7008-7022.

【18】Huang Hong, Zhen Xinlei, Luo Fulin, et al. Hyperspectral image classification with combination of weighted mean filter and manifold reconstruction preserving embedding[J]. Acta Photonica Sinica, 2016, 45(10): 1030001.
黄 鸿, 郑新磊, 罗甫林, 等. 融合加权均值滤波与流形重构保持嵌入的高光谱影像分类[J]. 光子学报, 2016, 45(10): 1030001.

【19】Hsiuhan L Y, Melba M C. Spectral and spatial proximity-based manifold alignment for multitemporal hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 51-64.

【20】Dalton L, Saurabh P, Melba M C, et al. Manifold-learning based feature extraction for classification of hyperspectral data: a review of advances in manifold learning[J]. IEEE Signal Processing Magazine, 2014, 31(1): 55-66.

引用该论文

Hou Banghuan,Yao Minli,Wang Rong,Zhang Fenggan,Dai Dingcheng. Spatial-Spectral Semi-Supervised Local Discriminant Analysis for Hyperspectral Image Classification[J]. Acta Optica Sinica, 2017, 37(7): 0728002

侯榜焕,姚敏立,王 榕,张峰干,戴定成. 面向高光谱图像分类的空谱半监督局部判别分析[J]. 光学学报, 2017, 37(7): 0728002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF