首页 > 论文 > 光学学报 > 37卷 > 7期(pp:726001--1)

H2O和CO2高温混合气体喷流红外辐射特性

Infrared Radiation Characteristics of High-Temperature H2O and CO2 Gas Mixture Jet Flows

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用数值仿真方法研究了H2O和CO2高温混合气体喷流的红外辐射特性。根据H2O和CO2两种气体的吸收特性,将红外波段划分为1.32~1.69 μm、1.56~2.27 μm、2.27~3.8 μm、3.8~8.3 μm和8.3~20 μm五个波段。建立了基于某型发动机喷嘴的尾流红外辐射特性模型,并利用此模型分别研究了H2O和CO2高温混合气体喷流在这五个波段的辐射特性分布。仿真结果表明,喷流中H2O含量越高,越有助于能量的扩散,因此喷流温度和辐射能量也越低;在高温喷流的辐射特性中,中波红外波段辐射能量最强,长波红外波段的最弱。

Abstract

Infrared radiation characteristics of the high-temperature H2O and CO2 gas mixture jet flows are investigated with the numerical simulation method. The infrared band is divided into five bands (1.32-1.69 μm, 1.56-2.27 μm, 2.27-3.8 μm, 3.8-8.3 μm and 8.3-20 μm) according to the absorption features of H2O and CO2 gases. The model for describing the infrared radiation characteristics of wake flows from an engine nozzle is set up, and the radiation characteristic distributions of jet flows in the five infrared bands are numerically simulated based on this model. The results show that the more H2O content in the jet flows, the more contributions to the energy diffusion, thereby the temperature of jet flows and the quantity of radiation are lower. In addition, there is the maximum radiation quantity in the mid-wave infrared band and the minimum radiation quantity in the long wave infrared band.

投稿润色
补充资料

中图分类号:O432.1

DOI:10.3788/aos201737.0726001

所属栏目:物理光学

收稿日期:2017-03-16

修改稿日期:2017-03-22

网络出版日期:--

作者单位    点击查看

郑海晶:北京理工大学光电学院, 北京 100081
白廷柱:北京理工大学光电学院, 北京 100081
王全喜:海军装备研究院系统所, 北京 100073
曹峰梅:北京理工大学光电学院, 北京 100081

联系人作者:郑海晶(zhjsea08@163.com)

备注:郑海晶(1988-),男,博士研究生,主要从事发动机尾焰辐射特性方面的研究。

【1】Rankin B A, Ihme M, Gore J. Quantitative model-based imaging of mid-infrared radiation from a turbulent non-premixed jet flame and plume[J]. Combustion and Flame, 2015, 162(4): 1275-1283.

【2】Blunck D, Harvazinski M, Rankin R, et al. Turbulent radiation statistics of exhaust plumes exiting from a subsonic axisymmetric nozzle[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(2): 286-293.

【3】Blunck D L, Harvazinksi M E, Merkle C L, et al. Influence of turbulent fluctuations on the radiation intensity emitted from exhaust plumes[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(4): 581-589.

【4】Blunck D L, Gore J. Study of narrowband radiation intensity measurements from subsonic exhaust plumes[J]. Journal of Propulsion and Power, 2011, 27(1): 227-235.

【5】Mahulikar S P, Potnuru S K, Rao G A. Study of sunshine, skyshine, and earthshine for aircraft infrared detection[J]. Journal of Optics A, 2009, 11(4): 045703.

【6】Liu Zunyang, Shao Li, Wang Yafu, et al. Influence of flight parameters on the infrared radiation of a liquid rocket exhaust plume[J]. Acta Optica Sinica, 2013, 33(4): 0404001.
刘尊洋, 邵 立, 汪亚夫, 等. 飞行参数对液体火箭尾焰红外辐射特性的影响[J]. 光学学报, 2013, 33(4): 0404001.

【7】Liu Zunyang, Shao Li, Wang Yafu, et al. Influence of afterburning on the infrared radiation of solid rocket exhaust plume[J]. Acta Optica Sinica, 2013, 33(6): 0604001.
刘尊洋, 邵 立, 汪亚夫, 等. 复燃对固体火箭尾焰红外辐射特性的影响[J]. 光学学报, 2013, 33(6): 0604001.

【8】Liu Zunyang, Shao Li, Wang Yafu, et al. Influence of afterburning on infrared radiation of liquid rocket exhaust plume[J]. Acta Photonica Sinica, 2013, 42(4): 480-485.
刘尊洋, 邵 立, 汪亚夫, 等. 复燃对液体火箭尾焰红外辐射特性的影响[J]. 光子学报, 2013, 42(4): 480-485.

【9】Wang Weichen, Li Shipeng, Zhang Qiao, et al. Influence of operating conditions on temperature distributions of exhaust plume of solid rocket motor[J]. Acta Armamentarii, 2011, 32(12):1493-1498.
王伟臣, 李世鹏, 张 峤, 等. 工作条件对固体发动机羽流温度场的影响[J]. 兵工学报, 2011, 32(12): 1493-1498.

【10】Fiveland W A, Jamaluddin A S. Three-dimensional spectral radiative heat transfer solutions by the discrete-ordinates method[J]. Journal of Thermophysics and Heat Transfer, 1991, 5(3):335-339.

【11】Alberti M, Weber R, Mancini M, et al. Comparison of models for predicting band emissivity of carbon dioxide and water vapour at high temperatures[J]. International Journal of Heat and Mass Transfer, 2013, 64: 910-925.

【12】Rothman L S, Gordon I Z, Barber R J, et al. HITEMP, the high-temperature molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2010, 111(15): 2139-2150.

【13】Alberti M, Weber R, Mancini M, et al. Validation of HITEMP-2010 for carbon dioxide and water vapor at high temperatures and atmospheric pressures in 450-7600 cm-1 spectral range[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 157: 14-33.

【14】Laraia A L, Gamache R R, Lamouroux J, et al. Total internal partition sums to support planetary remote sensing[J]. Icarus, 2011, 215(1): 391-400.

【15】Clough S A, Shephard M W, Mlawer E J, et al. Atmospheric radiative transfer modeling: A summary of the AER codes[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 91(2): 233-244.

【16】Coppalle A, Vervisch P. The total emissivities of high-temperature flames[J]. Combustion and Flame, 1983, 49(1/2/3): 101-108.

【17】Edwards D K, Matavosian R. Scaling rules for total absorptivity and emissivity of gases[J]. Journal of Heat Transfer, 1984, 106(4): 684-689.

【18】Molvik G, Merkle C. A set of strongly coupled, upwind algorithms for computing flows in chemical non-equilibrium[C]. 27th Aerospace Sciences Meeting and Exhibit, 1989: 199.

【19】Sinha N, Dash S, Hosangadi A. Applications of an implicit, to steady/unsteady reacting, upwind Navier-Stokes code, CRAFT, multi-phase flowfields[C]. 30th Aerospace Sciences Meeting and Exhibit, 1992: 837.

【20】York B, Sinha N, Dash S. Navier-Stokes simulation of plume vertical launching system interaction flowfields[C]. 30th Aerospace Sciences Meeting and Exhibit, 1992: 839.

【21】Rao R, Candler G, Wright M. Numerical simulations of Atlas II rocket motor plumes[C]. 35th Joint Propulsion Conference and Exhibit, 1999: 2258.

【22】Candler G, Rao R, Sinha K. Numerical simulations of Atlas-II rocket motor plumes[C]. 39th Aerospace Sciences Meeting and Exhibit, 2001: 354.

【23】Jachimowski C J. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion[R]. NASA Langley Research Center, 1988: 2791.

【24】Cocks P, Dawes W, Cant R. The influence of turbulence-chemistry interaction modelling for supersonic combustion[C]. 49th Aerospace Sciences Meeting and Exhibit, 2011: 306.

【25】Roblin A, Dubois I, Grisch F. Comparison between computations and measurements of a H2/LOX rocket motor plume[C]. 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2002: 3107.

【26】Calhoon W H, Kenzakowsk D C. Flowfield and radiation analysis of missile exhaust plumes using a turbulent-chemistry interaction model[C]. 36th Joint Propulsion Conference and Exhibit, 2000: 3388.

【27】Calhoon W H. Computational assessment of afterburning cessation mechanisms in fuel-rich rocket exhaust plumes[J]. Journal of Propulsion and Power, 2001, 17(1): 111-119.

【28】Calhoon W H, Kenzakowsk D C. Assessment of turbulence -chemistry interactions in missile exhaust plume signature analysis[J]. Journal of Spacecraft and Rockets, 2003, 40(5): 694-695.

【29】Calhoon W, Brinckman K, Tomes J, et al. Scalar fluctuation and transport modeling for application to high speed reacting flows[C]. 44th Aerospace Sciences Meeting and Exhibit, 2006: 1452.

【30】Devir A, Lessin A, Lev M, et al. Comparison of calculated and measured radiation from a rocket motor plume[C]. 49th Aerospace Sciences Meeting and Exhibit, 2011: 358.

引用该论文

Zheng Haijing,Bai Tingzhu,Wang Quanxi,Cao Fengmei. Infrared Radiation Characteristics of High-Temperature H2O and CO2 Gas Mixture Jet Flows[J]. Acta Optica Sinica, 2017, 37(7): 0726001

郑海晶,白廷柱,王全喜,曹峰梅. H2O和CO2高温混合气体喷流红外辐射特性[J]. 光学学报, 2017, 37(7): 0726001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF