首页 > 论文 > 激光与光电子学进展 > 54卷 > 8期(pp:80402--1)

应用于激光诱导荧光检测的微透镜阵列

Microlens Array Applied for Laser Induced Fluorescence Detection

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于激光诱导荧光检测技术的微流控系统广泛应用于生物化学检测领域。针对微流控系统中检测样本较少, 诱导荧光强度较弱的问题, 设计并制作了一种集成有微透镜阵列(MLA)的微流控芯片来提高荧光检测强度。采用热熔技术制备直径变异系数为0.36%的8×8光刻胶微透镜阵列模具。采用软光刻工艺, 制造集成有聚二甲基硅氧烷微透镜阵列的盖片, 焦距均匀性误差为7%。制造具有微通道的基片, 并采用氧等离子键合技术封装盖片和基片。将浓度为10 μmol·L-1的异硫氰酸荧光素荧光染料溶液注入微流控芯片, 利用荧光显微镜检测芯片的荧光强度。结果表明, 透镜处的荧光强度比无透镜时提高了约2.2倍。

Abstract

Microfluidic systems based on laser induced fluorescence (LIF) detection technology have been widely used in the field of biochemistry detection. Aiming at the problem of weak fluorescence intensity induced by a few detection samples in the microfluidic system, a microfluidic chip integrating a microlens array (MLA) is designed and fabricated to improve the intensity of the detected fluorescence. An 8×8 photoresist MLA mold with the diameter variation coefficient of 0.36% is obtained by the hot melt technology. Then, a cover plate integrating a polydimethylsiloxane MLA is produced by the soft-lithography technology, and the focal length uniformity error is 7%. Afterwards, a micro-channel substrate is made. The substrate and the cover plate are packaged by the oxygen plasma bonding technology. Finally, the fluorescence intensity of the chip is detected by a fluorescence microscope, and the chip is injected by fluorescein isothiocyanate fluorescent dye solution with concentration of 10 μmol·L-1. The result shows that the fluorescence intensity with the microlens is improved about 2.2 times as much as the fluorescence intensity without the microlens.

投稿润色
补充资料

中图分类号:TN405

DOI:10.3788/lop54.080402

所属栏目:探测器

基金项目:国家自然科学基金面上项目(51375076, 51475079)、国家自然科学基金创新研究群体项目(51621064)

收稿日期:2017-02-06

修改稿日期:2017-03-06

网络出版日期:--

作者单位    点击查看

张学海:大连理工大学机械工程学院, 辽宁 大连 116024
刘冲:大连理工大学辽宁省微纳米技术及系统重点实验室, 辽宁 大连 116024
梁超:大连理工大学机械工程学院, 辽宁 大连 116024
孟凡健:大连理工大学机械工程学院, 辽宁 大连 116024
李经民:大连理工大学辽宁省微纳米技术及系统重点实验室, 辽宁 大连 116024

联系人作者:张学海(zhangxh@mail.dlut.edu.cn)

备注:张学海(1990-), 男, 硕士研究生, 主要从事微流控检测方面的研究。

【1】Park S, Jeong Y, Kim J, et al. Fabrication of poly (dimethylsiloxane) microlens for laser-induced fluorescence detection[J]. Japanese Journal of Applied Physics, 2006, 45(6B): 5614-5617.

【2】Yang H, Shyu R F, Huang J W. New production method of convex microlens arrays for integrated fluorescence microfluidic detection systems[J]. Microsystem Technologies, 2006, 12(10): 907-912.

【3】Roy E, Voisin B, Gravel J F, et al. Microlens array fabrication by enhanced thermal reflow process: towards efficient collection of fluorescence light from microarrays[J]. Microelectronic Engineering, 2009, 86(11): 2255-2261.

【4】Hung T Q, Chin W H, Sun Y, et al. A novel lab-on-chip platform with integrated solid phase PCR and supercritical angle fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection[J]. Biosensors and Bioelectronics, 2016, 90: 217-223.

【5】Bernat I, Gonzalez-Murillo J J, Fonseca L, et al. Optical particle detection in liquid suspensions with a hybrid integrated microsystem[J]. Sensors and Actuators A: Physical, 2016, 247: 629-640.

【6】Kamei T, Sumitomo K, Ito S, et al. Heterogeneously integrated laser-induced fluorescence detection devices: integration of an excitation source[J]. Japanese Journal of Applied Physics, 2014, 53(6S): 06JL02.

【7】Schonbrun E, Steinvurzel P E, Crozier K B.A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array[J]. Optics Express, 2011, 19(2): 1385-1394.

【8】Piruska A, Nikcevic I, Lee S H, et al. The autofluorescence of plastic materials and chips measured under laser irradiation[J]. Lab on a Chip, 2005, 5(12): 1348-1354.

【9】Severi M, Mottier P. Etching selectivity control during resist pattern transfer into silica for the fabrication of microlenses with reduced spherical aberrations[J]. Optical Engineering, 1999, 38(1): 146-150.

【10】O′Neill F T, Sheridan J T. Photoresist reflow method of microlens production. Part I: background and experiments[J]. Optik-International Journal for Light and Electron Optics, 2002, 113(9): 391-404.

【11】Audran S, Faure B, Mortini B, et al. Study of mechanisms involved in photoresist microlens formation[J]. Microelectronic Engineering, 2006, 83: 1087-1090.

【12】Ashraf M, Gupta C, Chollet F, et al. Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder[J]. Optics and Lasers in Engineering, 2008, 46(10): 711-720.

【13】Hung K Y, Tseng F G, Chou H P. Application of 3D gray mask for the fabrication of curved SU-8 structures[J]. Microsystem Technologies, 2005, 11(4): 365-369.

【14】Yang J J, Liao Y S, Chen C F. Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process[J]. Optics Communications, 2007, 270(2): 433-440.

【15】Croutxé-Barghorn C, Soppera O, Lougnot D J.Fabrication of microlenses by direct photo-induced crosslinking polymerization[J]. Applied Surface Science, 2000, 168: 89-91.

【16】Chang C Y, Yu C H. A basic experimental study of ultrasonic assisted hot embossing process for rapid fabrication of microlens arrays[J]. Journal of Micromechanics and Microengineering, 2015, 25(2): 025010.

【17】Lei Yu, Tong Qing, Zhang Xinyu. Liquid crystal microlens array for dual mode imaging[J]. Acta Optica Sinica, 2016, 36(5): 0511004.
雷 宇, 佟 庆, 张新宇. 基于双模成像的液晶微透镜阵列[J]. 光学学报, 2016, 36(5): 0511004.

【18】Cui Jianli, Zhang Binzhen, Duan Junping, et al. Rapid fabrication technology of microlens arrays based on NOA73[J]. Chinese J Lasers, 2016, 43(7): 0703003.
崔建利, 张斌珍, 段俊萍, 等. NOA73材料的微透镜阵列快速制造技术[J]. 中国激光, 2016, 43(7): 0703003.

【19】Lin B S, Yang Y C, Ho C Y, et al. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems[J]. Sensors, 2014, 14(2): 2967-2980.

【20】Zhang Xiangwu. Derivation of lens equation by using Fermat′s principle[J]. College Physics, 1999, 18(1): 30-31.
张相武. 用费马原理推导透镜的物像公式[J]. 大学物理, 1999, 18(1): 30-31.

【21】Chen Yuying. Pharmaceutical practical instrument analysis[M]. Beijing: Higher Education Press, 2006: 108-109.
陈玉英. 药学实用仪器分析[M]. 北京: 高等教育出版社, 2006: 108-109.

引用该论文

Zhang Xuehai,Liu Chong,Liang Chao,Meng Fanjian,Li Jingmin. Microlens Array Applied for Laser Induced Fluorescence Detection[J]. Laser & Optoelectronics Progress, 2017, 54(8): 080402

张学海,刘冲,梁超,孟凡健,李经民. 应用于激光诱导荧光检测的微透镜阵列[J]. 激光与光电子学进展, 2017, 54(8): 080402

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF