首页 > 论文 > 激光与光电子学进展 > 54卷 > 8期(pp:83001--1)

基于吸收光谱技术在线测量煤球热解过程中CH4气体的浓度

On-Line Measuring Concentration of CH4 During Coal Particle Pyrolysis Based on Absorption Spectroscopy Technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

煤粉热解过程中产物及组分的不同会直接影响煤的燃烧特性, 为了进一步研究煤粉热解过程中产物浓度的变化, 采用1.65 μm附近的一组2v3的CH4气体吸收谱线, 在利用波长调制技术对原始激光强度修正的基础上, 实现了大同煤和准东煤热解过程中CH4气体浓度的在线测量。将直径约为8 mm、质量约为360 mg的单颗粒煤球通过金属丝悬挂于石英管中, 为使单颗粒煤球在热解过程中被迅速加热且受热均匀, 采用高功率CO2激光器与反射镜实现单颗粒煤球的均匀对称加热。可调谐激光光束在单颗粒煤球下方约10 mm处经3次反射穿过石英管, CH4气体浓度测量的过程从热解开始前一直持续到热解过程完全结束。在热解过程的开始阶段, CH4气体的浓度迅速增加, 之后逐渐下降, 直至最后降为0, 整个热解过程持续时间约为60 s。在气体释放速率最大处, 准东煤产生的CH4气体的体积分数约为大同煤的2倍;准东煤发生热解反应更加迅速, 且产生了较多的CH4气体。

Abstract

The pyrolysis products and their components of pulverized coal will directly affect the combustion characteristics. In order to further study the variation of the product concentration during pyrolysis process, a group of CH4 absorption lines (2v3) near 1.65 μm are used for on-line measurement of CH4 concentration in Datong pulverized coal and Zhundong pulverized coal pyrolysis processes based on wavelength modulation technique. The pulverized coal particle with diameter of 8 mm and mass of 360 mg is hung on the quartz tube, a high power CO2 laser is applied to rapid and uniform heating of the pulverized coal particle. The tunable laser beam goes through the quartz tube cross section with triple effective reflection, and the laser beam is at 10 mm below the pulverized coal. The measurement process continues until the pyrolysis process is completely over. At the beginning of the pyrolysis process, the volume fraction of CH4 increases rapidly, then gradually decreases until the concentration is zero, and the whole pyrolysis process lasts about 60 s. The volume fraction of CH4 of Zhundong coal at maximum release rate is twice of that of Datong coal, and the pyrolytic reaction of Zhundong coal is quicker, and much more CH4 gas can be generated by Zhundong coal.

投稿润色
补充资料

中图分类号:O657.38

DOI:10.3788/lop54.083001

所属栏目:光谱学

基金项目:国家自然科学基金(51276165)、高等学校博士学科点专项科研基金(20110101110019)

收稿日期:2017-02-17

修改稿日期:2017-04-01

网络出版日期:--

作者单位    点击查看

张立芳:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
王飞:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
俞李斌:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
吴奇:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
严建华:浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027

联系人作者:张立芳(21227023@zju.edu.cn)

备注:张立芳(1988-), 女, 博士研究生, 主要从事可调谐激光吸收光谱技术在线测量及理论分析等方面的研究。

【1】Allen M G. Diode laser absorption sensors for gas-dynamic and combustion flows[J]. Measurement Science and Technology, 1998, 9(4): 545-562.

【2】Baer D S, Nagali V, Furlong E R, et al. Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers[J]. American Institute of Aeronautics Astronautics Journal, 1996, 34(3): 489-493.

【3】Liu Lifu, Zhang Han, Wen Zuole, et al. Application of TDLAS technique to HCl online monitoring in waste incineration[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110101.
刘立富, 张 涵, 温作乐, 等. 基于TDLAS技术在垃圾焚烧中HCl的在线监测应用[J]. 激光与光电子学进展, 2015, 52(11): 110101.

【4】Yao Lu, Liu Wenqing, Liu Jianguo, et al. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J]. Chinese J Lasers, 2015, 42(2): 0215003.
姚 路, 刘文清, 刘建国, 等. 基于TDLAS的长光程环境大气痕量CO监测方法研究[J]. 中国激光, 2015, 42(2): 0215003.

【5】Hu Renzhi, Wang Dan, Xie Pinhua, et al. Diode laser cavity ring-down spectroscopy for atmospheric NO2 measurement[J]. Acta Optica Sinica, 2016, 36(2): 0230006.
胡仁志, 王 丹, 谢品华, 等. 二极管激光腔衰荡光谱技术测量大气NO2[J]. 光学学报, 2016, 36(2): 0230006.

【6】Lackner M, Totsching G, Winter F, et al. In situ laser measurements of CO and CH4 close to the surface of a buring single fuel particle[J]. Measurement Science & Technology, 2002, 13: 1545-1551.

【7】HE Yong. Study on alkali release and OH radicals during coal and syngas combustion using laser diagnostic techniques[D]. Hangzhou: Zhejiang University, 2013: 41-57.
何 勇. 煤及气化煤气燃烧过程中的碱金属及OH自由基激光在线测量研究[D]. 杭州: 浙江大学, 2013: 41-57.

【8】Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1998, 54: 197-236.

【9】Zhang Lifang, Wang Fei, Yu Libin, et al. The research for trace ammonia escape monitoring system based on tunable diode laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1639-1642.
张立芳, 王 飞, 俞李斌, 等. 基于可调谐激光吸收光谱技术的脱硝过程中微量逃逸氨气检测实验研究[J]. 光谱学与光谱分析, 2015, 35(6): 1639-1642.

【10】Xing Dawei, Wang Fei, Jiang Zhishen, et al. Two-dimensional reconstruction for gas concentration with tunable diode laser absorption spectroscopy[J]. Optical Technique, 2013, 39(3): 241-246.
邢大伟, 王 飞, 姜治深, 等. 可调谐激光吸收光谱应用于气体二维浓度分布重建研究[J]. 光学技术, 2013, 39(3): 241-246.

【11】Yao Hua. Research on remote sensing of methane based on tunable diode laser absorption spectroscopy technique[D]. Hangzhou: Zhejiang University, 2011: 34-60.
姚 华. 采用可调谐激光吸收光谱技术遥测甲烷气体浓度的研究[D]. 杭州: 浙江大学, 2011: 34-60.

【12】Xie Kechang. Coal structure and its reactivity[M]. Beijing: Science Press, 2002: 210-268.
谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002: 210-268.

【13】Lackner M, Loeffler G, Totsching G, et al. Carbon conversion of solid fuels in the freeboard of a laboratory-scale fluidized bed combustor-application of in situ laser spectroscopy[J]. Fuel, 2004, 83: 1289-1298.

引用该论文

Zhang Lifang,Wang Fei,Yu Libin,Wu Qi,Yan Jianhua. On-Line Measuring Concentration of CH4 During Coal Particle Pyrolysis Based on Absorption Spectroscopy Technology[J]. Laser & Optoelectronics Progress, 2017, 54(8): 083001

张立芳,王飞,俞李斌,吴奇,严建华. 基于吸收光谱技术在线测量煤球热解过程中CH4气体的浓度[J]. 激光与光电子学进展, 2017, 54(8): 083001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF