首页 > 论文 > 激光与光电子学进展 > 54卷 > 8期(pp:81005--1)

基于多特征融合的玉米前期图像的旱情识别

Drought Identification Based on Multi-Features Fusion for Early Maize Images

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现对玉米植株旱情的分析, 针对目前农业干旱指标涉及领域较为广泛、获取困难的研究现状, 提出了一种基于多特征融合的玉米前期图像旱情识别方法。以正常和特旱两种情况的玉米植株图像为样本, 采用经典K-means算法对玉米植株图像提取感兴趣区域;进而提取分割后的玉米植株图像, 包括颜色、奇异值分解(SVD)、纹理等共计20维特征;采用遗传算法对20维特征选择有效特征子集;最后针对有效特征子集建立了基于最小二乘支持向量机的判别模型, 获取了玉米植株图像的旱情信息。将单个特征(颜色、SVD、纹理)直接融合之后的特征以及利用主成分分析法的特征选择作为对比实验, 平均识别正确率分别为 0.9503、0.9627、0.9771、0.9460、0.9745, 而采用遗传算法进行特征选择后, 最终寻到最优解为9维特征, 平均识别正确率为0.9903。结果表明,运用图像处理技术可以对旱情进行识别, 取得了较好的效果, 为农业旱情的识别提供了新思路。

Abstract

In order to analyze the drought of maize plants and aiming at the difficulty and broad in recognizing agricultural drought, we propose a method to identify the drought of maize plants based on the multi-features fusion. The images of normal and seriously drought plants are taken as samples. The K-means algorithm is used to extract the interesting areas of maize plant images. And, the features of the pictures are extracted after image segmentation, including colors, singular value decomposition (SVD) and textures, a total of 20 dimensional features. The genetic algorithm is used to select a effective features subset of 20 dimensional features. Finally, the discrimination model based on least squares support vector machine is established for the effective features subset and images of maize plant drought are obtained. The single feature (color、SVD、texture) after directly fusion and using principal component analysis for feature selection are performed as comparative experiments, the average recognition accuracies are 0.9503, 0.9627, 0.9771, 0.9460, 0.9745, respectively. The genetic algorithm is used to select the features, and finally finds 9 dimensional features as the optimal solution. The average recognition accuracy is 0.9903. The result shows that this image processing technology can identify the drought situation of the maize plants effectively and efficiently. And it also provides a new idea for the drought identification of maize plants.

投稿润色
补充资料

中图分类号:TP3-05

DOI:10.3788/lop54.081005

所属栏目:图像处理

收稿日期:2017-02-24

修改稿日期:2017-03-29

网络出版日期:--

作者单位    点击查看

路志英:天津大学电气自动化与信息工程学院天津市过程检测与控制重点实验室, 天津 300072
刘书辰:天津大学电气自动化与信息工程学院天津市过程检测与控制重点实验室, 天津 300072
宫志宏:天津大学电气自动化与信息工程学院天津市过程检测与控制重点实验室, 天津 300072

联系人作者:路志英(luzy@tju.edu.cn)

备注:路志英(1964-), 女, 博士, 教授, 主要从事数据挖掘、图像处理方面的研究。

【1】Li Maosong, Li Sen, Li Yuhui. Studies on drought in the past 50 years in China[J]. Chinese Journal of Agrometeorology, 2003, 24(1): 7-10.
李茂松, 李 森, 李育慧. 中国近50年旱灾灾情分析[J]. 中国农业气象, 2003, 24(1): 7-10.

【2】Ni Shenhai, Gu Ying, Yan Nana, et al. Research on agricultural drought assessment method based on information assimilation of moisture cycle simulation model and remote sensing image information[J]. China Rural Water and Hydropower, 2016(1): 51-54.
倪深海, 顾 颖, 闫娜娜, 等. 农业旱情评估方法研究--基于农田水分循环模拟与遥感影像信息同化[J]. 中国农村水利水电, 2016(1): 51-54.

【3】Lu H, Cao Z, Xiao Y, et al. Fine-grained maize tassel trait characterization with multi-view representations[J]. Computers and Electronics in Agriculture, 2015, 118: 143-158.

【4】Camargo A, Smith J S. Image pattern classification for the identification of disease causing agents in plants[J]. Computers and Electronics in Agriculture, 2009, 66(2): 121-125.

【5】Selim S Z, Ismail M A. K-means-type algorithms: A generalized convergence theorem and characterization of local optimality[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(1): 81-87.

【6】Lu Zhiying, Liu Hai, Jia Huizhen, et al. Recognition of hail and rainstorm based on the radar reflectivity image features[J]. Acta Physica Sinica, 2014, 63(18): 189201.
路志英, 刘 海, 贾惠珍, 等. 基于雷达反射率图像特征的冰雹暴雨识别[J]. 物理学报, 2014, 63(18): 189201.

【7】Pan Haibin, Zhang Wei, Cong Mingyu, et al. Image preprocessing algorithm for space target space-based detection[J]. Acta Optica Sinica, 2009, 29(9): 2402-2407.
潘海斌, 张 伟, 丛明煜, 等. 一种空间目标在轨检测图像预处理算法[J]. 光学学报, 2009, 29(9): 2402-2407.

【8】Wu J Y. A image retrieval method based on color histogram[C]. Informatics in Control, Automation and Robotics, 2012, 133: 741-746.

【9】Haralick R M, Shanmugam K, Dinstein I. Texture features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3(6): 610-621.

【10】Liu Tao, Sun Chengming, Wang Lijian, et al. In-field wheatear counting based on image processing technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 282-290.
刘 涛, 孙成明, 王力坚, 等. 基于图像处理技术的大田麦穗计数[J]. 农业机械学报, 2014, 45(2): 282-290.

【11】Zhang S W, Wang Z. Cucumber disease recognition based on global-local singular value decomposition[J]. Neurocomputing, 2016, 205: 341-348.

【12】Chang Liping, Shen Weixing, Lin Zunqi. Algorithm for digital wavefront fitting based on singular value decomposition[J]. Acta Optica Sinica, 2006, 26(11): 1676-1680.
常丽萍, 沈卫星, 林尊琪. 基于奇异值分解的数字波前拟合算法[J]. 光学学报, 2006, 26(11): 1676-1680.

【13】Zhang Xianda. Matrix analysis and applications[M]. Beijing: Tsinghua University Press, 2013.
张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2013.

【14】Holland J H. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, artificial intelligence[M]. Cambridge: MIT Press, 1992.

【15】Chen Xiaofeng, Long Changjiang, Niu Zhiyou, et al. Classification research of Chinese medicine based on latent semantic analysis and NIR[J]. Acta Optica Sinica, 2014, 34(9): 0930001.
陈晓峰, 龙长江, 牛智有, 等. 基于潜在语义分析与NIR的中药材分类研究[J]. 光学学报, 2014, 34(9): 0930001.

【16】Fawcett T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861-874.

【17】Zhou Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 28-37.
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 28-37.

引用该论文

Lu Zhiying,Liu Shuchen,Gong Zhihong. Drought Identification Based on Multi-Features Fusion for Early Maize Images[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081005

路志英,刘书辰,宫志宏. 基于多特征融合的玉米前期图像的旱情识别[J]. 激光与光电子学进展, 2017, 54(8): 081005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF