首页 > 论文 > 激光与光电子学进展 > 54卷 > 8期(pp:81004--1)

一种超像素区域相似性度量的遥感信息提取算法

An Extraction Algorithm of Remote Sensing Information Based on Similarity Measurement for Superpixel Regions

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了解决目前主流的显著性检测算法在复杂多目标遥感图像中检测能力不足的问题, 提出一种基于超像素区域相似性度量的显著目标提取算法。该算法利用简单线性迭代聚类方法对原始图像进行超像素分割, 通过基于图论的视觉显著性方法检测出显著超像素, 并对其修正得到显著目标提取的训练样本, 进一步逐层计算全体超像素区域与显著超像素区域的相似性并转化为超像素区域的隶属度值, 最后实现对整幅超像素图像的显著目标提取。实验结果表明, 该算法具有较高的准确率和召回率, 能更加有效地检测出遥感图像中的显著目标, 提取效果优于主流的显著性检测算法, 还可以有效应用于复杂多目标的遥感图像显著目标信息提取中。

Abstract

In order to optimize the insufficient ability for complex multi-target remote sensing image detection using the reported saliency algorithms, an extraction algorithm of salient object based on similarity measurement for superpixel regions is proposed. The original image is segmented into certain superpixel regions using simple linear iterative clustering method, and some high saliency regions are extracted correctly using graph-based visual saliency method. Meanwhile, parts of the edge superpixels need to be amended and the rest of salient superpixels are used as training samples. By calculating the similarity of all superpixels and training samples hierarchically, a reasonable membership value of each superpixel is established to separate the goal superpixel regions with high saliency. Finally, all the superpixels salient objects from the original images are extracted successfully using the membership values. The experimental results show that the proposed algorithm has higher precision and recall rates than the other saliency detection methods, thus it can be effectively applied to complicated multi-objective in target information extraction of remote sensing images significantly.

投稿润色
补充资料

中图分类号:TP751.1

DOI:10.3788/lop54.081004

所属栏目:图像处理

基金项目:国家863计划(2015AA7026087)、国家自然科学基金(41501489)、国家科技支撑计划(2015BAB05B05-02)、中国地质调查局项目(12120113089200)、中国科学院遥感与数字地球研究所所长青年基金(Y6SJ1100CX)、高分辨率对地观测系统重大专项(民用部分)(30-Y20A37-9003-15/17)

收稿日期:2017-03-10

修改稿日期:2017-04-11

网络出版日期:--

作者单位    点击查看

闫琦:中国科学院遥感与数字地球研究所数字地球重点实验室, 北京 100094中国科学院大学, 北京 100049
李慧:中国科学院遥感与数字地球研究所数字地球重点实验室, 北京 100094
荆林海:中国科学院遥感与数字地球研究所数字地球重点实验室, 北京 100094
唐韵玮:中国科学院遥感与数字地球研究所数字地球重点实验室, 北京 100094
丁海峰:中国科学院遥感与数字地球研究所数字地球重点实验室, 北京 100094

联系人作者:闫琦(yanqi@radi.ac.cn)

备注:闫琦(1989-), 男, 硕士研究生, 主要从事高分辨率遥感图像处理方面的研究。

【1】Li Deren, Zhang Liangpei, Xia Guisong. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1211-1216.
李德仁, 张良培, 夏桂松. 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 2014, 43(12): 1211-1216.

【2】Wang Rong. Information extraction method research of high resolution remote sensing image[D]. Lanzhou: Lanzhou Jiaotong University, 2013.
王 荣. 高分辨率遥感影像信息提取方法的研究[D]. 兰州: 兰州交通大学, 2013.

【3】Mou Li, Zhang Xuewu, Zhang Zhuo, et al. Saliency detection optimization method in natural scene[J]. Laser & Optoelectronics Progress, 2016, 53(12): 121501.
牟 丽, 张学武, 张 卓, 等. 自然场景下的显著性检测优化方法[J]. 激光与光电子学进展, 2016, 53(12): 121501.

【4】Li Z Q, Chen J S. Superpixel segmentation using linear spectral clustering[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1356-1363.

【5】Wang X F, Min H, Zou L, et al. A novel level set method for image segmentation by incorporating local statistical analysis and global similarity measurement[J]. Pattern Recognition, 2015, 48(1): 189-204.

【6】Desimone R, Duncan J. Neural mechanisms of selective visual attention[J]. Annual Review of Neuroscience, 1995, 18(1): 193-222.

【7】Zhang Libao, Zhang Jue. A new adaptive fusion method based on saliency analysis for remote sensing images[J]. Chinese J Lasers, 2015, 42(1): 0114001.
张立保, 章 珏. 基于显著性分析的自适应遥感图像融合[J]. 中国激光, 2015, 42(1): 0114001.

【8】Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 1998, 20(11): 1254-1259.

【9】Achanta R, Estrada F, Wils P, et al. Salient region detection and segmentation[C]. International Conference on Computer Vision Systems, 2008: 66-75.

【10】Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2009: 1597-1604.

【11】Harel J, Koch C, Perona P. Graph-based visual saliency[C]. Proceedings of the 19th International Conference on Neural Information Processing Systems, 2006: 545-552.

【12】Song Xiyi, Zhou Lili, Li Zhongguo, et al. Review on superpixel methods in image segmentation[J]. Journal of Image and Graphics, 2015, 20(5): 0599-0608.
宋熙煜, 周利莉, 李中国, 等. 图像分割中的超像素方法研究综述[J]. 中国图象图形学报, 2015, 20(5): 0599-0608.

【13】Shi J, Malik J. Normalizedcuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.

【14】Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-598.

【15】Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603--619.

【16】Achanta R, Shaji A, Smith K, et al. SLIC superpixels[R]. EPFL Technical Report, 2010: 149300.

【17】Achanta R, Shaji A, Smith K,et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.

【18】Liu Baosheng, Yan Liping, Zhou Donghua. Comparison of some classical similarity measures[J]. Application Research of Computers, 2006, 23(11): 1-3.
刘宝生, 闫莉萍, 周东华. 几种经典相似性度量的比较研究[J]. 计算机应用研究, 2006, 23(11): 1-3.

【19】Chen Weibing. Comparison of matching capabilities in similarity measurements[J]. Journal of Computer Applications, 2010, 30(1): 98-110.
陈卫兵. 几种图像相似性度量的匹配性能比较[J]. 计算机应用, 2010, 30(1): 98-110.

【20】Zhang J, Korfhage R R. A distance and angle similarity measure method[J]. Journal of theAmerican Society for Information Science, 1999, 50(9): 772-778.

【21】Zitova B, Flusser J. Image registration methods: a survey[J]. Imageand Vision Computing, 2003, 21(11): 977-1000.

【22】Yan Yu, Sun Jinyao. An improved-SLIC algorithm based on regional re-division[J]. Laser Journal, 2016, 37(8): 129-133.
颜 雨, 孙尽尧. 基于区域再分割的改进型SLIC超像素生成算法[J]. 激光杂志, 2016, 37(8): 129-133.

【23】Xu Mingzi, Lü Li, Li Xiwang. Topic-focused web crawler system[J]. Computer Systems and Applications, 2013, 22(7): 36-39.
徐明子, 吕 立, 李喜旺. 改进空间向量模型主题网络爬虫系统[J]. 计算机系统应用, 2013, 22(7): 36-39.

【24】Liu Yuehu, Wang Fei, Liu Xiaodong, et al. A feature matrix similarity measure method and its application to image retrieval[J]. Pattern Recognition and Artificial Intelligence, 2006, 19(4): 497-502.
刘跃虎, 王 飞, 刘晓东, 等. 一种特征矩阵的相似性度量方法及其在图像检索中的应用[J]. 模式识别与人工智能, 2006, 19(4): 497-502.

【25】Zhang Yujin. Image processing and analysis technology[M]. Beijing: Higher Education Press, 2008.
章毓晋. 图像处理和分析技术[M]. 北京: 高等教育出版社, 2008.

【26】Duan Shan, Wang Xiaofan, Zhang Hong. Research on method of similarity measure for images[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2016, 35(4): 121-125.
段 汕, 王小凡, 张 洪. 图像相似性度量方法的研究[J]. 中南民族大学学报(自然科学版), 2016, 35(4): 121-125.

【27】Hu Yuxi, Li Yikun, Yang Shuwen, et al. Content-based urban area image retrieval in remote sensing image database[J]. Remote Sensing for Land and Resources, 2016, 28(3): 67-72.
胡玉玺, 李轶鲲, 杨树文, 等. 基于内容的遥感图像数据库城市区域检索[J]. 国土资源遥感, 2016, 28(3): 67-72.

【28】Zhang min, Feng Xiaohong. Image retrieval based on two-step similarity measure[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2010, 30(6): 101-106.
张 敏, 冯晓虹. 基于两阶段相似性度量策略的图像检索方法[J]. 南京邮电大学学报(自然科学版), 2010, 30(6): 101-106.

【29】Mardones T, Allende H, Moraga C. Leveraging similarities and structure for dense representations combination in image retrieval[J]. Journal of Visual Communication and Image Representation, 2016, 38: 641-657.

【30】Li X. Image retrieval based on perceptive weighted color blocks[J]. Pattern Recognition Letters, 2003, 24(12): 1935-1941.

【31】Lin Chang, He Bingwei, Dong Shengsheng. An indoor object fast detection method based on visual attention mechanism of fusion depth information in RGB image[J]. Chinese J Lasers, 2014, 41(11): 1108005.
林 昌, 何炳蔚, 董升升. 融合深度信息的室内RGB图像视觉显著物体快速检测方法[J]. 中国激光, 2014, 41(11): 1108005.

【32】Zhang Yaya, Liu Xiaowei, Liu Futai, et al. Color image segmentation based on improved SLIC method[J]. Computer Engineering, 2015, 41(4): 205-209.
张亚亚, 刘小伟, 刘福太, 等. 基于改进SLIC方法的彩色图像分割[J]. 计算机工程, 2015, 41(4): 205-209.

【33】Otsu N. Athreshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man and Cybernetics, 1979, 9(1): 62-66.

【34】Tan X Y, Triggs B. Fusing gabor and LBP feature sets for kernel-based face recognition[C]. International Workshop on Analysis and Modeling of Faces and Gestures, 2007: 235-249.

【35】Tu Xiaopo. Image saliency and its evaluation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
涂小坡. 图像显著性算法和评价研究[D]. 南京: 南京航空航天大学, 2011.

【36】Wen Qi, Li Lingling, Liu Qingjie, et al. A man-made object area extraction method based on visual saliency detection and graph-cut segmentation for high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6): 831-837.
温 奇, 李苓苓, 刘庆杰, 等. 基于视觉显著性和图分割的高分辨率遥感影像中人工目标区域提取[J]. 测绘学报, 2013, 42(6): 831-837.

引用该论文

Yan Qi,Li Hui,Jing Linhai,Tang Yunwei,Ding Haifeng. An Extraction Algorithm of Remote Sensing Information Based on Similarity Measurement for Superpixel Regions[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081004

闫琦,李慧,荆林海,唐韵玮,丁海峰. 一种超像素区域相似性度量的遥感信息提取算法[J]. 激光与光电子学进展, 2017, 54(8): 081004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF