首页 > 论文 > 激光与光电子学进展 > 54卷 > 8期(pp:82701--1)

利用声子辅助跃迁调控半导体量子点电磁感应透明的光存储

Controlling Optical Storage in Semiconductor Quantum Dot Electromagnetically Induced Transparency by Phonon-Assisted Transition

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于当前的实验条件, 在半导体量子点中考虑声子辅助跃迁效应去构建环形四能级半导体量子点电磁感应透明介质模型。利用多重尺度法解析地研究了其中的时间光孤子的动力学行为。结果发现, 可以通过调整声子辅助跃迁强度来控制时间光孤子的幅度、宽度和群速度等动力学性质。时间光孤子的群速度远小于光速, 且随着声子辅助跃迁强度的增加, 孤子的群速度不断减小, 以至于可能缓变接近于零从而出现停滞现象。光停滞有利于将光存储于量子器件内, 这为半导体量子器件实现光存储提供一定的参考价值。

Abstract

Based on the current experimental conditions, a model of annular four-level semiconductor quantum dot electromagnetically induced transparency medium is constructed by considering the phonon-assisted transition effect in semiconductor quantum dot. Dynamical behaviors of the temporal optical soliton in this system is analytically studied by using multiple-scale method. The results show that dynamical properties such as amplitude, width and group velocity of the temporal optical soliton can be controlled by adjusting the strength of the phonon-assisted transition. The group velocity of the temporal optical soliton is much smaller than the velocity of light. And when the strength of the phonon-assisted transition increases, the group velocity of the soliton decreases continuously. So, the group velocity may slowly close to zero that it appears stagnation. The optical stagnation is helpful for light storing in quantum devices. It provides some reference values to realize optical storage in the semiconductor quantum devices.

投稿润色
补充资料

中图分类号:O431.2

DOI:10.3788/lop54.082701

所属栏目:量子光学

基金项目:国家自然科学基金(51372214,11374252,11474245)、贵州省教育厅自然科学研究项目[KY(2015)384, KY(2015)446]

收稿日期:2017-03-20

修改稿日期:2017-03-31

网络出版日期:--

作者单位    点击查看

黎方名:湘潭大学物理与光电工程学院, 湖南 湘潭 411105
王登龙:湘潭大学物理与光电工程学院, 湖南 湘潭 411105
佘彦超:铜仁学院物理与电子工程学院, 贵州 铜仁 554300
丁建文:湘潭大学物理与光电工程学院, 湖南 湘潭 411105
肖思国:湘潭大学物理与光电工程学院, 湖南 湘潭 411105

联系人作者:黎方名(fmli123@xtu.edu.cn)

备注:黎方名(1991-), 女, 硕士研究生, 主要从事半导体量子点电磁感应透明介质中的非线性光学性质方面的研究。

【1】Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultrcold atomic gas[J]. Nature, 1999, 397(6720): 594-598.

【2】Luo B, Hang C, Li H J, et al. Ultraslow optical solitons via electromagnetically induced transparency: a density-matrix approach[J]. Chin Phys B, 2010, 19(5): 054214.

【3】Du Yingjie, Yang Zhanying, Xie Xiaotao, et al. Influence of higher nonlinearity to optical solitons in electromagnetically induced transparency medium[J]. Acta Optica Sinica, 2015, 35(2): 0227002.
杜英杰, 杨战营, 谢小涛, 等. 电磁感应透明的高阶非线性效应对光孤子的影响[J]. 光学学报, 2015, 35(2): 0227002.

【4】Fleischhauer M, Lukin M D. Dark-state polaritons in electromagnetically induced transparency[J]. Physical Review Letters, 2000, 84(22): 5094-5097.

【5】Liu C, Dutton Z, Behroozi C H, et al. Observation of coherent optical information storage in an atomic medium using halted light pulse[J]. Nature, 2001, 409(6819): 490-493.

【6】Phillips D F, Fleischhauer A, Mair A, et al. Storage of light in atomic vapor[J]. Physical Review Letters, 2001, 86(5): 783-786.

【7】Li L M, Peng X, Liu C, et al. The deceleration and storage of a light pulse in caesium vapour[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(2): 39-42.

【8】Longdell J J, Fraval E, Sellars M J, et al. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid[J]. Physical Review Letters, 2005, 95(6): 063601.

【9】Ginsberg N S, Garner S R, Hau L V. Coherent control of optical information with matter wave dynamics[J]. Nature, 2007, 445(7128): 623-626.

【10】Chen Y, Bai Z Y, Huang G X. Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system[J]. Physical Review A, 2014, 89(2): 023835.

【11】She Y C, Zheng X J, Wang D L, et al. Controllable double tunneling transparency and solitons formation in a quantum dot molecule[J]. Optics Express, 2013, 21(14): 17392-17403.

【12】Zeng Kuanhong, Wang Denglong, She Yanchao, et al. Spatial optical soliton pairs in a quantum dot with exciton-biexciton coherence[J]. Acta Physica Sinica, 2013, 62(14): 147801.
曾宽宏, 王登龙, 佘彦超, 等. 计及激子-双激子相干下半导体单量子点中的空间光孤子对[J]. 物理学报, 2013, 62(14): 147801.

【13】Ding C L, Hao X Y, Li J H, et al. Efficient generation of maximally entangled states via four-wave mixing in a semiconductor quantum-dot nanostructure[J]. Physics Letters A, 2010, 374(4): 680-686.

【14】Wang Z P, Zhen S L, Wu X Q, et al. Controllable optical bistability via tunneling induced transparency in quantum dot molecules[J]. Optics Communications, 2013, 304(1): 7-10.

【15】Hao X Y, Wu J, Wang Y. Steady-state absorption-dispersion properties and four-wave mixing process in a quantum dot nanostructure[J]. Journal of the Optical Society of America B, 2012, 29(3): 420-428.

【16】Shan G C, Yin Z Q, Shek C H, et al. Single photon sources with single semiconductor quantum dots[J]. Frontiers of Physics, 2014, 9(2): 170-193.

【17】Zeng K H, Wang D L, She Y C, et al. The formation and transformation of the spatial weak-light bright and dark solitons in a quantum dot molecule with the interdot tunneling coupling[J]. European Physical Journal D-Atoms, Molecules, Optical & Plasma Physics, 2013, 67(11): 221.

【18】Li J, Liu J B, Yang X X. Superluminal optical soliton via resonant tunneling in coupled quantum dots[J]. Physica E: Low-dimensional Systems and Nanostructures, 2008, 40(9): 2916-2920.

【19】Yang W X, Chen A X, Lee R K, et al. Matched slow optical soliton pairs via biexciton coherence in quantum dots[J]. Physical Review A, 2011, 84(1): 013835.

【20】Li J H, Yu R, Huang P, et al. Spatial weak infrared-light bright and dark solitons in semiconductor quantum-dot nanostructures[J]. Physics Letters A, 2009, 373(5): 554-557.

【21】Luo Tingting, Wang Denglong, She Yanchao, et al. Collision characteristics of two coupled temporal vector optical solitons in quantum dot[J]. Acta Optica Sinica, 2016, 36(2): 0227001.
罗婷婷, 王登龙, 佘彦超, 等. 量子点中两耦合时间矢量光孤子的碰撞特性[J]. 光学学报, 2016, 36(2): 0227001.

【22】Hao X Y, Zheng A S, Wang Y, et al. Enhanced cross-phase modulation via phase control in a quantum dot nanostructure[J]. Communications in Theoretical Physics, 2012, 57(5): 866-872.

【23】Qi Y H, Zhou F X, Yang J, et al. Controllable twin laser pulse propagation and dual-optical switching in a four-level quantum dot nanostructure[J]. Journal of the Optical Society of America B, 2013, 30(7): 1928-1936.

【24】Kuehn W, Reimann K, Woerner M, et al. Strong correlation of electronic and lattice excitations in GaAs/AlGaAs semiconductor quantum wells revealed by two-dimensional terahertz spectroscopy[J]. Physical Review Letters, 2011, 107(6): 067401.

【25】Luo X Q, Wang D L, Zhang Z Q, et al. Nonlinear optical behavior of a four-level quantum well with coupled relaxation of optical and longitudinal phonons[J]. Physical Review A, 2011, 84(3): 033803.

【26】Heitz R, Mukhametzhanov I, Stier O, et al. Enhanced polar exciton-LO-phonon interaction in quantum dots[J]. Physical Review Letters, 1999, 83(22): 4654-4657.

【27】Devreese J T, Fomin V M, Gladilin V N, et al. Enhanced probabilities of phonon-assisted optical transitions in semiconductor quantum dots[J]. Nanotechnology, 2001, 13(2): 163-168.

【28】She Y C, Luo T T, Zhang W X, et al. Steady-state linear optical properties and Kerr nonlinear optical response of a four-level quantum dot with phonon-assisted transition[J]. Chinese Physics B, 2016, 25(1): 014202.

【29】Gammon D, Snow E S, Shanabrook V, et al. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot[J]. Science, 1996, 273(5271): 87-90.

【30】Brunner K, Abstreiter G, Bhm G, et al. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure[J]. Physical Review Letters, 1994, 73(8): 1138-1141.

【31】Hang C, Huang G X. Ultraslow optical solitons in a four-level tripod atomic system[J]. Physics Letters A, 2008, 372(17): 3129-3135.

【32】Huang G X, Deng L, Payne M G. Dynamics of ultraslow optical solitons in a cold three-state atomic system[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 72(1): 016617.

【33】Borri P, Langbein W, Schneider S, et al. Ultralong dephasing time in InGaAs quantum dots[J]. Physical Review Letters, 2001, 87(15): 157401.

【34】Borri P, Langbein W, Woggon U, et al. Exciton dephasing in quantum dot molecules[J]. Physical Review Letters, 2003, 91(26): 267401.

【35】Larqué M, Robert-Philip I, Beveratos A. Bell inequalities and density matrix for polarization-entangled photons out of a two-photon cascade in a single quantum dot[J]. Physical Review A, 2008, 77(4): 042118.

引用该论文

Li Fangming,Wang Denglong,She Yanchao,Ding Jianwen,Xiao Siguo. Controlling Optical Storage in Semiconductor Quantum Dot Electromagnetically Induced Transparency by Phonon-Assisted Transition[J]. Laser & Optoelectronics Progress, 2017, 54(8): 082701

黎方名,王登龙,佘彦超,丁建文,肖思国. 利用声子辅助跃迁调控半导体量子点电磁感应透明的光存储[J]. 激光与光电子学进展, 2017, 54(8): 082701

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF