首页 > 论文 > 光学学报 > 37卷 > 8期(pp:830001--1)

水体细菌微生物多波长透射光谱解析模型

An Analytical Model for Multi-Wavelength Transmittance Spectra of Bacteria in Water

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

细菌多波长透射光谱包含有细菌结构、组分、浓度等信息, 这些特征信息的有效提取是实现细菌微生物快速识别与检测的基础。以水体常见的大肠埃希氏菌(大肠杆菌)为研究对象, 采用紫外-可见分光光度法获得了其多波长透射光谱; 基于Mie散射理论, 在充分考虑水体大肠杆菌散射和吸收特性的基础上, 构建了240~900 nm波段范围内细菌微生物多波长透射光谱的解析模型; 基于该模型对250~750 nm特征波段范围内的光谱进行解析, 获得了大肠杆菌的体积、粒径、结构及浓度等相关参数, 并将这些参数与文献及实验得到的结果进行了对比验证。结果表明, 建立的多波长透射光谱解析模型能够准确表征水体细菌微生物的光谱特征, 该模型可为水体细菌微生物的快速识别分析和检测提供关键数据。

Abstract

Multi-wavelength transmittance spectra of bacteria in water contain lots of information on their characteristics such as structure, constituent and concentration, and the effective extraction of the information is the foundation of rapid identification and detection of bacteria. The transmittance spectrum of Escherichia coli is recorded with a ultraviolet-visible spectrophotometer. According to Mie scattering theory and absorption and scattering properties, bacterial multi-wavelength transmittance spectrum analytical model in 240-900 nm band is constructed. Based on the model, the spectrum in the range of 250-750 nm is analyzed, the related parameters such as volume, diameter, structure and concentration of Escherichia coli cells are obtained, and these parameters are then compared with the literature data or experimental data. It is shown that the proposed multi-wavelength transmission spectrum model can accurately characterize the spectral features of bacteria in water, and the model can provide important parameters for the rapid analysis and detection of bacteria in water.

投稿润色
补充资料

中图分类号:O433.4

DOI:10.3788/aos201737.0830001

所属栏目:光谱学

基金项目:国家自然科学基金(61378041)、安徽省自然科学基金(1508085JGD02, 1608085QF137)、安徽省科技重大专项(15CZZ04125)

收稿日期:2017-01-10

修改稿日期:2017-03-12

网络出版日期:--

作者单位    点击查看

胡玉霞:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
赵南京:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
甘婷婷:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
段静波:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
喻慧娟:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
孟德硕:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
刘建国:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
刘文清:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031

联系人作者:胡玉霞(yxhu@aiofm.ac.cn)

备注:胡玉霞(1984-), 女, 博士研究生, 主要从事水体细菌微生物光谱检测技术方面的研究。

【1】Parveen R, Saha S, Shamshuzzaman S, et al. Detection of uropathogens by using chromogenic media (hicrome UTI agar), CLED agar and other conventional media[J]. Faridpur Medical College Journal, 2011, 6(1): 46-50.

【2】Esiobu N. Use of peptide nucleic acid probes for rapid detection and enumeration of viable bacteria in recreational waters and beach sand[M]∥O’Connor L. Diagnostic bacteriology protocols. Totowa: Humana Press, 2006: 131-140.

【3】Poltronieri P, Cimaglia F, de Lorenzis E, et al. Protein chips for detection of Salmonella spp. from enrichment culture[J]. Sensors, 2016, 16(4): 574.

【4】Sohn M, Himmelsbach D S, Barton F E, et al. Fluorescence spectroscopy for rapid detection and classification of bacterial pathogens[J]. Applied Spectroscopy, 2009, 63(11): 1251-1255.

【5】Yin Gaofang, Zhao Nanjing, Hu Li, et al. Classified measurement of phytoplankton based on characteristic fluorescence of photosynthetic pigments[J]. Acta Optica Sinica, 2014, 34(9): 0930005.
殷高方, 赵南京, 胡 丽, 等. 基于色素特征荧光光谱的浮游植物分类测量方法[J]. 光学学报, 2014, 34(9): 0930005.

【6】Wang Shutao, Chen Dongying, Wei Meng, et al. Application of fluorescence spectroscopy and PSO-BP neural network in the detection of potassium sorbate concentration[J]. Chinese J Lasers, 2015, 42(5): 0515004.
王书涛, 陈东营, 魏 蒙, 等. 荧光光谱法和 PSO-BP神经网络在山梨酸钾浓度检测中的应用[J]. 中国激光, 2015, 42(5): 0515004.

【7】Sengupta A, Mujacic M, Davis E J. Detection of bacteria by surface-enhanced Raman spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2006, 386(5): 1379-1386.

【8】Yang D, Ying Y. Applications of Raman spectroscopy in agricultural products and food analysis: a review[J]. Applied Spectroscopy Reviews, 2011, 46(7): 539-560.

【9】Chen Yue, Wang Luwei, Tao Zhanhua, et al. Novel application of optical techniques: revealing the mechanism of germination of bacterial spores[J]. Laser & Optoelectronics Progress, 2015, 52(10): 100002.
陈 越, 王璐玮, 陶站华, 等. 光学技术的创新应用: 细菌芽孢萌发机理研究[J]. 激光与光电子学进展, 2015, 52(10): 100002.

【10】Deng Yong, Luo Qingming, Lu Qiang. Analysis of single backscattering spectra for a two-layer scattering medium[J]. Acta Optica Sinica, 2006, 26(4): 595-599.
邓 勇, 骆清铭, 鲁 强. 双层散射介质的单次后向散射光谱分析[J]. 光学学报, 2006, 26(4): 595-599.

【11】Katz A, Alimova A, Xu M, et al. Bacteria size determination by elastic light scattering[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(2): 277-287.

【12】Mourant J R, Campolat M, Brocke C, et al. Light scattering from cells: the contribution of the nucleus and the effects of proliferative status[J]. Journal of Biomedical Optics, 2000, 5(2): 131-137.

【13】Murrell W G. Chemical composition of spores and spore structures, in the bacterial spores[M]. New York: Academic Press, 1969: 215-220.

【14】Guo Yaojun. Spectrophotometric technique and its application in biochemistry[M]. Beijing: Science Press, 1987: 233-252.
郭尧君. 分光光度技术及其在生物化学中应用[M]. 北京: 科学出版社, 1987: 233-252.

【15】Wang Jiuyue, Zhao Nanjing, Duan Jingbo, et al. The study of rapid species identification of bacteria in water[J]. Spectroscopy and Spectral Analysis, 2015, 35(9): 2634-2638.
王久悦, 赵南京, 段静波, 等. 水体细菌微生物种类快速鉴别方法研究[J]. 光谱学与光谱分析, 2015, 35(9): 2634-2638.

【16】Kerker M. The scattering of light and other electromagnetic radiation[M]. New York: Pergamon Press, 1969: 15-20.

【17】Bohren C F, Huffman D R. Absorption and scattering of sight by small particles[M]. New York: Wiley, 1983: 228-338.

【18】Thormhlen I, Straub J, Grigull U. Refractive index of water and its dependence on wavelength, temperature, and density[J]. Journal of Physical & Chemical Reference Data, 1985, 14(4): 933-945.

【19】Alupoaei C E, Garcia-Rubio L H. Growth behavior of microorganisms using UV-Vis spectroscopy: Escherichia coli[J]. Biotechnology & Bioengineering, 2004, 86(2): 163-167.

【20】Mattley Y D, Garcia-Rubio L H. Multiwavelength spectroscopy for the detection, identification and quantification of cells[C]. SPIE, 2001, 4206: 65-71.

【21】Alupoaei C E, Olivares J A, García-Rubio L H. Quantitative spectroscopy analysis of prokaryotic cells: vegetative cell and spores[J]. Biosensors and Bioelectronics, 2004, 19(8): 893-903.

【22】Feng Mingchun, Xu Liang, Gao Minguang, et al. Optical properties research of Bacillus subtilis spores by Fourier transform infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2012, 32(12): 3193-3196.
冯明春, 徐 亮, 高闽光 等. 傅里叶变换红外光谱对枯草芽孢杆菌的光学特性研究[J]. 光谱学与光谱分析, 2012, 32(12): 3193-3196.

【23】Zhou Wen, Cao Wenxi, Li Cai, et al. Spectral scattering property of phytoplankton calculated by absorption coefficient and size distribution[J]. Acta Optica Sinica, 2008, 28(8): 1430-1433.
周 雯, 曹文熙, 李 彩, 等. 由吸收系数和粒度分布计算浮游植物的散射光谱特征[J]. 光学学报, 2008, 28(8): 1430-1433.

【24】Sun Dujuan, Hu Yihua, Gu Youlin, et al. Determination and model construction of microbes’ complex refractive index in far infrared band[J]. Acta Physica Sinica, 2013, 62(9): 094218.
孙杜娟, 胡以华, 顾有林 等. 微生物远红外波段复折射率测定及模型构建[J]. 物理学报, 2013, 62(9): 094218.

【25】Buchanan R E. Bergey’s manual of determinative bacteriology[M]. Beijing: Science Press, 1984: 382-385.
布坎南. 伯杰细菌鉴定手册[M]. 北京: 科学出版社, 1984: 382-385.

引用该论文

Hu Yuxia,Zhao Nanjing,Gan Tingting,Duan Jingbo,Yu Huijuan,Meng Deshuo,Liu Jianguo,Liu Wenqing. An Analytical Model for Multi-Wavelength Transmittance Spectra of Bacteria in Water[J]. Acta Optica Sinica, 2017, 37(8): 0830001

胡玉霞,赵南京,甘婷婷,段静波,喻慧娟,孟德硕,刘建国,刘文清. 水体细菌微生物多波长透射光谱解析模型[J]. 光学学报, 2017, 37(8): 0830001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF