首页 > 论文 > 中国激光 > 44卷 > 8期(pp:802008--1)

外加纵向磁场对激光-MIG复合焊接接头形貌及微观组织的影响

Influence of External Longitudinal Magnetic Field on Weld Joint Morphology and Microstructure in Laser-Metal Inert Gas Hybrid Welding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了外加纵向磁场对SUS316L奥氏体不锈钢激光-稀有气体保护复合焊接接头成形特点、微观组织及显微硬度分布的影响。实验结果表明, 在外加纵向磁场的作用下, 接头的余高减小, 熔宽增大, 成形系数增大, 截面宽而深。外加磁场改变了接头的热循环, 使热影响区析出长条形δ-铁素体, 抑制了晶粒的生长。外加磁场使熔池旋转, 接头晶粒得到细化, 结晶均匀性得到提高, 显微硬度分布变得稳定。这种影响随着磁感应强度的增加而增强, 随着接头深度的增大而减弱。

Abstract

The influences of external longitudinal magnetic field on weld joint forming characteristics, microstructure and microhardness distribution are investigated in SUS316L austenitic stainless steels by laser-metal inert gas hybrid welding. The experimental results show that, under the action of external longitudinal magnetic field, the weld joint reinforcement decreases, the weld width increases, the forming coefficient increases, and the cross section appears wide and deep. The external magnetic field alters the thermal cycle of the weld joint, which makes the striped δ-ferrite precipitation occur in the heat affected zone and the grain growth is inhibited. The external magnetic field causes the rotation of the molten pool and the weld joint grains are refined. The uniformity of crystallization is improved and the microhardness distribution becomes stable. This effect enhances with the increase of the magnetic induction intensity but weakens with the increase of the weld joint depth.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG456.7

DOI:10.3788/cjl201744.0802008

所属栏目:激光制造

基金项目:国家973计划(2014CB045703)

收稿日期:2016-09-08

修改稿日期:2016-12-21

网络出版日期:--

作者单位    点击查看

张 勋:华中科技大学材料成形及模具技术国家重点实验室, 湖北 武汉 430074
李若杨:华中科技大学材料成形及模具技术国家重点实验室, 湖北 武汉 430074
赵泽洋:华中科技大学材料成形及模具技术国家重点实验室, 湖北 武汉 430074
米高阳:华中科技大学材料成形及模具技术国家重点实验室, 湖北 武汉 430074
王春明:华中科技大学材料成形及模具技术国家重点实验室, 湖北 武汉 430074
胡席远:华中科技大学材料成形及模具技术国家重点实验室, 湖北 武汉 430074

联系人作者:张勋(xun_zhang@hust.edu.cn)

备注:张 勋(1991-), 男, 硕士研究生, 主要从事多能场焊接方面的研究。

【1】Blinkov V A, Sheninkin M Z, Abralv M A. Grains of solidifying metal refined under vibrations[J]. Autom Weld, 1975, 28(11): 11-12.

【2】Wu C S,Yang F Z, Gao J Q. Effect of external magnetic field on weld pool flow conditions in high-speed gas metal arc welding[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230(1): 188-193.

【3】Malinowski-Brodnicka M,den Ouden G,Vink W J P. Effect of electromagnetic stirring on GTA welds in austenitic stainless steel[J]. Welding Journal, 1990, 69: 52s-59s.

【4】Mousavi M G, Hermans M J M, Richardson I M, et al. Grain refinement due to grain detachment in electromagnetically stirred AA7020 welds[J]. Science and Technology of Welding and Joining, 2003, 8(4): 309-312.

【5】Liu Y B, Sun Q J, Liu J P, et al. Effect of axial external magnetic field on cold metal transfer welds of aluminum alloy and stainless steel[J]. Materials Letters, 2015, 152: 29-31.

【6】Sundaresan S, Ram G D J. Use of magnetic arc oscillation for grain refinement of gas tungsten arc welds in α-β titanium alloys[J]. Science and Technology of Welding and Joining, 1999, 4(3): 151-160.

【7】Yue Jianfeng, Li Liangyu, Liu Wenji, et al. Downward welding pool shape control based on exterior high frequency alternative magnetic field[J]. Journal of Mechanical Engineering, 2013, 49(8): 65-70.
岳建锋, 李亮玉, 刘文吉, 等. 基于外加高频交变磁场下向MAG焊熔池成形控制[J]. 机械工程学报, 2013, 49(8): 65-70.

【8】Yao Q, Luo Z, Li Y, et al. Effect of electromagnetic stirring on the microstructures and mechanical properties of magnesium alloy resistance spot weld[J]. Materials and Design, 2014, 63: 200-207.

【9】Zhou J, Tsai H L. Application of electromagnetic force in laser welding[C]. ASME International Mechanical Engineering Congress and Exposition, 2007, 8: 1025-1030.

【10】Yang Decai, Liu Jinhe. Effect of outer magnetic field on laser beam welding penetration depth[J]. Laser Technology, 2001, 25(5): 347-350.
杨德才, 刘金和. 外加磁场对激光焊接熔深的影响[J]. 激光技术, 2001, 25(5): 347-350.

【11】Chen Wuzhu, Peng Yun, Wang Cheng, et al. Diffusion of plasma and effect of electric and magnetic fields in laser welding[J]. Chinese J Lasers, 2002, 29(s1): 529-531.
陈武柱, 彭 云, 王 成, 等. 激光焊接等离子体的扩散行为及电磁场对其作用的研究[J]. 中国激光, 2002, 29(s1): 529-531.

【12】Vollertsen F, Thomy C. Magnetic stirring during laser welding of aluminum[J]. Journal of Laser Applications, 2006, 18(1): 28-34.

【13】Gatzen M, Tang Z, Vollertsen F, et al. X-ray investigation of melt flow behavior under magnetic stirring regime in laser beam welding of aluminum[J]. Journal of Laser Applications, 2011, 23(3): 032002.

【14】Yu Shengfu, Zhang Youshou, Lei Yi, et al. Mechanisms of rotational magnetic field stirring of laser welded non-magnetic alloy for laser welding[J]. Transactions of the China Welding Institution, 2006, 27(3): 109-112.
余圣甫, 张友寿, 雷 毅, 等. 非磁性合金激光焊旋转磁场搅拌机理[J]. 焊接学报, 2006, 27(3): 109-112.

【15】Bachmann M, Avilov V, Gumenyuk A, et al. Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2014, 214(3): 578-591.

【16】Wang Wei, Liu Qi, Yang Guang, et al. Numerical simulation of electromagnetic flow, temperature field and flow field in laser molten pool with electromagnetic stirring[J]. Chinese J Lasers, 2015, 42(2): 0202007.
王 维, 刘 奇, 杨 光, 等. 电磁搅拌作用下激光熔池电磁场、温度场和流场的数值模拟[J]. 中国激光, 2015, 42(2): 0202007.

【17】Song Shiying, Wang Liang, Hu Yong, et al. Graded coating produced by laser melt injection under steady magnetic field[J]. Chinese J Lasers, 2016, 43(5): 0503005.
宋诗英, 王 梁, 胡 勇, 等. 稳态磁场辅助激光熔注制备梯度涂层[J]. 中国激光, 2016, 43(5): 0503005.

【18】Wang Liang, Hu Yong, Song Shiying, et al. Suppression effect of a steady magnetic field on surface undulation during laser remelting[J]. Chinese J Lasers, 2015, 42(11): 1103005.
王 梁, 胡 勇, 宋诗英, 等. 稳态磁场辅助对激光熔凝层表面波纹的抑制作用研究[J]. 中国激光, 2015, 42(11): 1103005.

【19】Kou S. Welding metallurgy[M]. New Jersey: John Wiley and Sons, 2002: 294-295.

【20】Zhang X, Zhao Z Y, Wang C M, et al. The effect of external longitudinal magnetic field on laser-MIG hybrid welding[J]. International Journal of Advanced Manufacturing Technology, 2016, 85(5): 1735-1743.

【21】Zhao Bo. Research on arc behaviors of narrow-gap MAG[D]. Harbin: Harbin Institute of Technology, 2009: 89-94.
赵 博. 窄间隙MAG焊电弧行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2009: 89-94.

【22】Capello E, Chiarello P, Previtali B, et al. Laser welding and surface treatment of a 22Cr-5Ni-3Mo duplex stainless steel[J]. Materials Science and Engineering A, 2003, 351(1/2): 334-343.

【23】John C L, Damian J K. Welding metallurgy and weldability of stainless steels[M]. New Jersey: John Wiley and Sons, 2005.

引用该论文

Zhang Xun,Li Ruoyang,Zhao Zeyang,Mi Gaoyang,Wang Chunming,Hu Xiyuan. Influence of External Longitudinal Magnetic Field on Weld Joint Morphology and Microstructure in Laser-Metal Inert Gas Hybrid Welding[J]. Chinese Journal of Lasers, 2017, 44(8): 0802008

张 勋,李若杨,赵泽洋,米高阳,王春明,胡席远. 外加纵向磁场对激光-MIG复合焊接接头形貌及微观组织的影响[J]. 中国激光, 2017, 44(8): 0802008

被引情况

【1】王梁,胡勇,林英华,李珏辉,姚建华. 电磁复合场对激光熔注增强颗粒分布梯度的调控. 中国激光, 2018, 45(10): 1002001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF