首页 > 论文 > 中国激光 > 44卷 > 8期(pp:801006--1)

基于光纤可饱和吸收体的1993 nm纳秒脉冲掺铥全光纤双腔激光器

1993 nm Nanosecond Pulse Generation from Tm-Doped All-Fiber Dual-Cavity Laser with Fiber-Based Saturable Absorber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

报道了一种基于光纤可饱和吸收体的纳秒脉冲掺铥全光纤双腔激光器。该激光器采用线型双腔结构, 采用1550 nm连续光纤激光器作为抽运源, 以光纤布拉格光栅作为波长选择器件, 利用掺铥光纤的可饱和吸收特性, 同时结合双谐振腔间的相互作用, 获得稳定的纳秒脉冲输出。分别采用单包层铥钬共掺光纤和双包层掺铥光纤作为增益介质, 研究二者对激光输出性能的影响, 并进行优化对比, 最终实现平均功率为256.3 mW, 最窄脉宽为87 ns的1993 nm激光输出, 脉冲重复频率在20.0~33.3 kHz范围内可调。

Abstract

A nanosecond Tm-doped all-fiber dual-cavity laser with fiber-based saturable absorber is reported. The laser oscillator is constructed in a linear dual-cavity. The system uses a 1550 nm continuous-wave fiber laser as the pump source and fiber Bragg gratings as the wavelength-selective devices. Based on the saturable absorption characteristics of the Tm-doped fiber and the unique design of dual-cavity, the stable nanosecond operation is achieved. Meanwhile, the effect of the single-cladding Ho-Tm co-doped fiber and double-cladding Tm-doped fiber as the gain media on the laser output performance is studied. The maximum output power of the system is 256.3 mW, and the minimum pulse duration is 87 ns with the central wavelength of 1993 nm. The sequential nanosecond pulses can be obtained at the repetition rate of 20.0-33.3 kHz.

投稿润色
补充资料

中图分类号:TN248

DOI:10.3788/cjl201744.0801006

所属栏目:激光物理

基金项目:国家自然科学基金(61235010, 61307054)、国家自然科学基金重大仪器项目(61527822)

收稿日期:2016-12-27

修改稿日期:2017-02-21

网络出版日期:--

作者单位    点击查看

刘 伟:北京工业大学激光工程研究院, 北京市激光应用技术工程技术研究中心, 北京 100124
金东臣:北京工业大学激光工程研究院, 北京市激光应用技术工程技术研究中心, 北京 100124
孙若愚:北京工业大学激光工程研究院, 北京市激光应用技术工程技术研究中心, 北京 100124
张 倩:北京工业大学激光工程研究院, 北京市激光应用技术工程技术研究中心, 北京 100124
侯玉斌:北京工业大学激光工程研究院, 北京市激光应用技术工程技术研究中心, 北京 100124
沈 默:北京工业大学激光工程研究院, 北京市激光应用技术工程技术研究中心, 北京 100124
刘 江:北京工业大学激光工程研究院, 北京市激光应用技术工程技术研究中心, 北京 100124
王 璞:北京工业大学激光工程研究院, 北京市激光应用技术工程技术研究中心, 北京 100124

联系人作者:刘伟(liuweiphy@163.com)

备注:刘 伟(1989-), 女, 硕士研究生, 主要从事光纤激光器及光纤放大器方面的研究。

【1】Zhang Yan, Zhang Peng, Liu Peng, et al. Fiber light source at 1.7 μm waveband and its applications[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090002.
张 岩, 张 鹏, 刘 鹏, 等. 1.7 μm波段光纤光源研究进展及其应用[J]. 激光与光电子学进展, 2016, 53(9): 090002.

【2】Popmintchev T, Chen M C, Arpin P, et al. The attosecond nonlinear optics of bright coherent X-ray generation[J]. Nature Photonics, 2010, 4(12): 822-832.

【3】Honea E, Savage-Leuchs M, Bowers M S, et al. Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser[C]. SPIE, 2013, 8601: 860111.

【4】Scholle K, Lamrini S, Koopmann P, et al. 2 μm laser sources and their possible applications[M]// Frontiers in Guided Wave Optics and Optoelectronics. Croatia: InTech, 2010.

【5】Li Z, Heidt A M, Daniel J M O, et al. Thulium-doped fiber amplifier for optical communications at 2 μm[J]. Optics Express, 2013, 21(8): 9289-9297.

【6】Cariou J P, Augere B, Valla M. Laser source requirements for coherent lidars based on fiber technology[J]. Comptes Rendus Physique, 2006, 7(2): 213-223.

【7】Zhu Lei, Wang Lulu, Dong Xinyong, et al. Mid-infrared supercontinuum generation with highly germanium-doped silica fiber[J]. Acta Optica Sinica, 2016, 36(3): 0319001.
朱 磊, 王鹿鹿, 董新永, 等. 基于高掺锗石英光纤的中红外超连续谱产生[J]. 光学学报, 2016, 36(3): 0319001.

【8】El-Sherif A F, King T A. High-energy, high brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator[J]. Optics Communications, 2003, 218(4/5/6): 337-344.

【9】Eichhorn M, Jackson S D. High-pulse-energy actively Q-switched Tm3+-doped silica 2 μm fiber laser pumped at 792 nm[J]. Optics Letters, 2007, 32(19): 2780-2782.

【10】Jiang M, Tayebati P. Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser[J]. Optics Letters, 2007, 32(13): 1797- 1799.

【11】Simakov N, Hemming A, Bennetts S, et al. Efficient, polarized, gain-switched operation of a Tm-doped fiber laser[J]. Optics Express, 2011, 19(16); 14949-14954.

【12】Spuhler G J, Paschotta R, Fluck R, et al. Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers[J]. Journal of the Optical Society of America B, 1999, 16(3): 376-388.

【13】Liu J, Wang Y G, Qu Z H, et al. 2 μm passive Q-switched mode-locked Tm3+∶YAP laser with single-walled carbon nanotube absorber[J]. Optics and Laser Technology, 2012, 44(4): 960-962.

【14】Jiang M, Ma H F, Ren Z Y, et al. A graphene Q-switched nanosecond Tm-doped fiber laser at 2 μm[J]. Laser Physics Letters, 2013, 10(5): 055103.

【15】Moore S W, Soh D B S, Bisson S E, et al. 400 μJ 79 ns amplified pulses from a Q-switched fiber laser using an Yb3+-doped fiber saturable absorber[J]. Optics Express, 2012, 20(21): 23778-23789.

【16】Lu Y, Gu X J. All-fiber passively Q-switched fiber laser with a Sm-doped fiber saturable absorber[J]. Optics Express,2013, 21(2): 1997-2002.

【17】Dvoyrin V V, Mashinsky V M, Dianov E M. Yb-Bi pulsed fiber lasers[J]. Optics Letters, 2007, 32(5): 451-453.

【18】Soh D B S, Bisson S E, Patterson B D, et al. High-power all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: numerical simulations[J]. Optics Letters, 2010, 36(13): 2536-2538.

【19】Toredella L, Djellout H, Dussardier B, et al. High repetition rate passively Q-switched Nd3+∶Cr4+ all-fibre laser[J]. Electronics Letters, 2003, 39(18): 1307-1308.

【20】Fotiadi A A, Kurkov A S, Razdobreev I M. All-fiber passively Q-switched ytterbium laser[C]. 2005 Conference on Lasers and Electro-Optics Europe, 2005: 515.

【21】Jackson S D. Passively Q-switched Tm3+-doped silica fiber lasers[J]. Applied Optics, 2007, 46(16): 3311-3317.

【22】Tsai T Y, Fang Y C, Lee Z C, et al. All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch[J]. Optics Letters, 2009, 34(19): 2891-2893.

【23】Tsai T Y, Fang Y C, Huang H M, et al. Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm[J]. Optics Express, 2010, 18(23): 23523-23528.

【24】Tsai T Y, Tsao H X, Huang C L, et al. 1590-nm-pumped passively Q-switched thulium all-fiber laser at 1900 nm[J]. Optics Express, 2015, 23(9): 11205-11210.

【25】Jin D C, Sun R Y, Shi H X, et al. Stable passively Q-switched and gain-switched Yb-doped all-fiber laser based on a dual-cavity with fiber Bragg gratings[J]. Optics Express, 2013, 21(22): 26027-26033.

【26】Jin D C, Sun R Y, Wei S Y, et al. High pulse-energy generation from a monolithic Yb-doped all-fiber dual-cavity laser with fiber-based passive Q-switch[C]. Conference of Advanced Solid State Lasers, 2014: AM5A.40.

【27】Jin Dongchen, Sun Ruoyu, Wei Shouyu, et al. 1570 nm nanosecond pulse generation from Er/Yb co-doped all-fiber dual-cavity laser with fiber-based passive Q-switched[J]. Chinese J Lasers, 2015, 42(10): 1002006.
金东臣, 孙若愚, 魏守宇, 等. 基于光纤被动调Q的1570 nm纳秒脉冲铒镱共掺全光纤双腔激光器[J]. 中国激光, 2015, 42(10): 1002006.

【28】Herda R, Kivist S, Okhotnikov O G. Dynamic gain induced pulse shortening in Q-switched lasers[J]. Optics Letters, 2008, 33(8): 1011-1013.

引用该论文

Liu Wei,Jin Dongchen,Sun Ruoyu,Zhang Qian,Hou Yubin,Shen Mo,Liu Jiang,Wang Pu. 1993 nm Nanosecond Pulse Generation from Tm-Doped All-Fiber Dual-Cavity Laser with Fiber-Based Saturable Absorber[J]. Chinese Journal of Lasers, 2017, 44(8): 0801006

刘 伟,金东臣,孙若愚,张 倩,侯玉斌,沈 默,刘 江,王 璞. 基于光纤可饱和吸收体的1993 nm纳秒脉冲掺铥全光纤双腔激光器[J]. 中国激光, 2017, 44(8): 0801006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF