首页 > 论文 > 中国激光 > 44卷 > 8期(pp:801007--1)

SGII-5 PW激光系统大能量光参量放大器光束近场分布均匀性

Analysis on Near-Field Distribution Uniformity of High Energy Optical Parametric Chirped Pulse Amplifier in SGII-5 PW System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了提高神光II 5 PW (SGII-5 PW) 超短脉冲激光系统的运行安全性, 针对大能量光参量啁啾脉冲放大(OPCPA)光束近场分布均匀性问题, 从理论上进行了数值模拟, 并与实验数据进行了对比分析。在1 PW级放大器模拟中, 以预放大器以及神光II大能量抽运脉冲的测量数据为基础, 利用参量耦合波方程组数值模拟方法, 得到了近场填充因子与光通量对比度在光参量放大过程中的演变, 并结合转换效率与输出稳定性进行讨论, 得到了对应于高光束质量、高转换效率与高稳定性的非线性晶体长度优化范围, 结果还表明抽运光对放大后光束均匀性影响较大, 进一步提升神光II第7路光束质量是大幅提升第2级OPCPA (OPCPA-II)光束均匀性的切实途径。

Abstract

In order to improve the operation security of Shenguang II 5 PW (SGII-5 PW) ultrashort pulse laser system, the near-field distribution uniformity of large energy optical parametric chirped pulse amplification (OPCPA) beam is numerically simulated, and the simulation results are compared with experimental results. In the 1 PW amplifier, based on the measurement data of the preamplifier and the SGII high energy pump pulse, the evolution of the near field fill factor and the fluence beam contrast in optical parametric amplification process are presented by numerical simulation of parametric coupling wave equations. The conversion efficiency and the amplification stability are also discussed. The optimal range of nonlinear crystal length, in which high beam quality, high conversion efficiency and high stability can be achieved simultaneously, is obtained. The results also indicate that the pump light greatly affects the amplified beam uniformity. Enhancement of the SGII 7th beam quality is a practical way to improve the beam uniformity of second stage OPCPA.

投稿润色
补充资料

中图分类号:O437.3;TN242

DOI:10.3788/cjl201744.0801007

所属栏目:激光物理

基金项目:国家自然科学基金 (11304332)、中国科学院对外合作重点项目

收稿日期:2017-02-15

修改稿日期:2017-04-01

网络出版日期:--

作者单位    点击查看

周 剑:中国科学院上海光学精密机械研究所高功率激光物理国家实验室, 上海 201800中国科学院大学, 北京 100049
孙美智:中国科学院上海光学精密机械研究所高功率激光物理国家实验室, 上海 201800
梁 潇:中国科学院上海光学精密机械研究所高功率激光物理国家实验室, 上海 201800中国科学院大学, 北京 100049
康 俊:中国科学院上海光学精密机械研究所高功率激光物理国家实验室, 上海 201800
郭爱林:中国科学院上海光学精密机械研究所高功率激光物理国家实验室, 上海 201800
杨庆伟:中国科学院上海光学精密机械研究所高功率激光物理国家实验室, 上海 201800
谢兴龙:中国科学院上海光学精密机械研究所高功率激光物理国家实验室, 上海 201800
朱健强:中国科学院上海光学精密机械研究所高功率激光物理国家实验室, 上海 201800
林尊琪:中国科学院上海光学精密机械研究所高功率激光物理国家实验室, 上海 201800

联系人作者:周剑(zhoujian1613@163.com)

备注:周 剑(1991-), 男, 硕士研究生, 主要从事超短脉冲放大技术方面的研究。

【1】Dubietis A, Jonuauskas G, Piskarskas A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal[J]. Optics Communications, 1992, 88(4/5/6): 437-440.

【2】Ross I N, Matousek P, New G H C, et al. Analysis and optimization of optical parametric chirped pulse amplification[J]. Journal of the Optical Society of America B, 2002, 19(12): 2945-2956.

【3】Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2015, 3: e3.

【4】Xie X L, Zhu J Q, Yang Q E, et al. Introduction to SG-II 5 PW laser facility[C]. Conference on Lasers and Electro-Optics, 2016: SM1M.7.

【5】Exawatt center for extreme light studies (XCELS)[OL]. [2017-06-17]. http://www.xcels.iapras.ru/img/XCELS-Project-english-version.pdf.

【6】The ELI-Nuclear Physics working groups. The white book of ELI Nuclear Physics Bucharest-Magurele, Romania[OL].[2017-06-17]. http://www.eli-np.ro/documents/ELI-NP-WhiteBook.pdf.

【7】Central Laser Facility. The vulcan 10 petawatt project[OL]. [2017-06-17]. https://www.clf.stfc.ac.uk/Pages/The-Vulcan-10-Petawatt-Project.aspx.

【8】Chériaux G, Giambruno F, Fréneaux A, et al. Apollon-10P: Status and implementation[C]. AIP Conference Proceedings, 2012: 78-83.

【9】Zuegel J D. Status of high-energy OPCPA at LLE and future prospects[C]. Conference on Lasers and Electro-Optics, 2014: JTh4L.4.

【10】Moses J, Manzoni C, Huang S W, et al. Temporal optimization of ultra-broadband high-energy OPCPA[J]. Optics Express, 2009, 17(7): 5540-5555.

【11】Guardalben M J, Keegan J, Waxer L J, et al. Design of a highly stable, high-conversion-efficiency, optical parametric chirped-pulse amplification system with good beam quality[J]. Optics Express, 2003, 11(20): 2511-2524.

【12】Kang J, Chen S H, Zhu J Q, et al. Design of a highly stable, high-conversion-efficiency pumping source for optical parametric amplifier by extending efficient crystal length[J]. Optics & Laser Technology, 2007, 39(5): 1084-1088.

【13】Wang Bopeng, Su Jingqin, Zeng Xiaoming, et al. Theoretical and experimental study on parametric fluorescence pulse width[J]. Acta Optica Sinica, 2016, 36(5): 0519001.
王波鹏, 粟敬钦, 曾小明, 等. 参量荧光脉宽的理论与实验研究[J]. 光学学报, 2016, 36(5): 0519001.

【14】Wang J, Ma J G, Wang Y Z, et al. Noise filtering in parametric amplification by dressing the seed beam with spatial chirp[J]. Optics Letters, 2014, 39(8): 2439-2442.

【15】Zhu Ping, Xie Xinglong, Jiao Zhaoyang, et al. Influence of wave-front error on temporal signal-to-noise ratio in large aperture ultrashort pulse focusing system[J]. Acta Optica Sinica, 2014, 34(10): 1032001.
朱 坪, 谢兴龙, 焦兆阳, 等. 大口径超短脉冲聚焦系统波前误差对时间信噪比的影响[J]. 光学学报, 2014, 34(10): 1032001.

【16】Zhang F L, Wang Y H, Sun M Z, et al. Numerical simulations of the impact of wavefront phase distortions of pump on the beam quality of OPCPA[J]. Chinese Optics Letters, 2010, 8(2): 217-220.

【17】Wei X H, Qian L J, Yuan P, et al. Optical parametric amplification pumped by a phase-aberrated beam[J]. Optics Express, 2008, 16(12): 8904-8915.

【18】You Kaiming, Hu Wei, Guo Hong, et al. Impact of the Fresnel number on the fill factor[J]. Acta Photonica Sinica, 2001, 30(1): 120-124.
游开明, 胡 巍, 郭 弘, 等. Fresnel数对光束填充因子的影响[J]. 光子学报, 2001, 30(1): 120-124.

【19】Haynam C A, Wegner P J, Auerbach J M, et al. National ignition facility laser performance status[J]. Applied Optics, 2007, 46(16): 3276-3303.

【20】Zhao Dongfeng, Wang Li, Lin Zunqi, et al. Experimental study of 351 nm propagation with high fluence on No.9 system of SG-Ⅱ laser facility[J]. Chinese J Lasers, 2011, 38(7): 0702001.
赵东峰, 王 利, 林尊琪, 等. 在神光Ⅱ装置第九路系统开展351 nm波长激光高通量传输的实验研究[J]. 中国激光, 2011, 38(7): 0702001.

【21】Sun Meizhi, Kang Jun, Zhang Yanli, et al. Analysis on phase matching and compression of amplified chirped pulse for various deuteration level DKDP crystals[J]. Acta Optica Sinica, 2015, 35(12): 1219002.
孙美智, 康 俊, 张艳丽, 等. 不同含氘量DKDP晶体参量匹配与放大啁啾脉冲压缩特性分析[J]. 光学学报, 2015, 35(12): 1219002.

【22】Xu L, Yu L H, Liang X Y, et al. High-energy noncollinear optical parametric-chirped pulse amplification in LBO at 800 nm[J]. Optics Letters, 2013, 38(22): 4837-4840.

【23】Liang Xiao, Kang Jun, Sun Meizhi, et al. 808 nm optical parametric amplification based on DKDP crystals[J]. Laser & Optoelectronics Progress, 2016, 53(8): 081901.
梁 潇, 康 俊, 孙美智, 等. 基于DKDP晶体的808 nm波段光参量放大研究[J]. 激光与光电子学进展, 2016, 53(8): 081901.

引用该论文

Zhou Jian,Sun Meizhi,Liang Xiao,Kang Jun,Guo Ailin,Yang Qingwei,Xie Xinglong,Zhu Jianqiang,Lin Zunqi. Analysis on Near-Field Distribution Uniformity of High Energy Optical Parametric Chirped Pulse Amplifier in SGII-5 PW System[J]. Chinese Journal of Lasers, 2017, 44(8): 0801007

周 剑,孙美智,梁 潇,康 俊,郭爱林,杨庆伟,谢兴龙,朱健强,林尊琪. SGII-5 PW激光系统大能量光参量放大器光束近场分布均匀性[J]. 中国激光, 2017, 44(8): 0801007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF