首页 > 论文 > 中国激光 > 44卷 > 8期(pp:801004--1)

双波长1.0 μm调Q和1.5 μm增益开关脉冲光纤激光器

Dual-Wavelength 1.0 μm Q-Switched and 1.5 μm Gain Switched Pulsed Fiber Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用铒镱共掺光纤, 实现了一种双波长1.0 μm 调Q和1.5 μm增益开关脉冲光纤激光器。实验装置是一个双环腔结构, 两环的公共端共用一段铒镱共掺光纤。1.0 μm调Q脉冲通过未抽运铒镱共掺光纤的可饱和吸收效应产生。而铒镱共掺光纤对1.0 μm调Q脉冲的再吸收会周期性调制铒离子的反转粒子数, 从而产生重复频率相等的1.5 μm增益开关脉冲。随着抽运功率的增加, 这两种脉冲的重复频率从5.4 kHz增加到11.7 kHz。1.5 μm脉冲相对1.0 μm脉冲有一定的延迟, 并且延迟时间随着抽运功率的增大而不断减小。在最大抽运功率处, 1.0 μm脉冲宽度、单脉冲能量和最大平均输出功率分别是5.3 μs、402.6 nJ 和 4.7 mW, 而对于1.5 μm脉冲, 分别是4.6 μs、 374.4 nJ 和 4.4 mW。

Abstract

A dual-wavelength 1.0 μm Q-switched and 1.5 μm gain-switched pulsed fiber laser is demonstrated by using a single Er/Yb co-doped gain fiber. Experimental setup consists of two loop resonators with one common branch including the Er/Yb co-doped fiber. The 1.0 μm Q-switched pulses are generated via the saturable absorption effect of the unpumped Er/Yb co-doped fiber, whereas a reabsorption of 1.0 μm Q-switched pulses from the Yb ions modulates the population inversion of Er ions periodically to generate 1.5 μm gain-switched pulses at the same repetition rate of 1.0 μm Q-switched pulses. With the increasing of pump power, the repetition rates of both pulses vary from 5.4 kHz to 11.7 kHz. However, the 1.5 μm pulses have a delay relative to 1.0 μm pulses, and the delay decreases with the increasing of pump power. At the maximum pump power, the pulse duration, single pulse energy and average output power for 1.0 μm pulses are 5.3 μs, 402.6 nJ and 4.7 mW respectively, whereas they are 4.6 μs, 374.4 nJ and 4.4 mW respectively for 1.5 μm pulses.

投稿润色
补充资料

中图分类号:TN248.1

DOI:10.3788/cjl201744.0801004

基金项目:国家自然科学基金(61308049)、国家863计划(2015AA021102)、广东省优秀青年教师培养项目(YQ2015142)、深圳市科技项目(JCYJ20130329103213543, JCYJ20140418091413568)

收稿日期:2017-02-22

修改稿日期:2017-04-05

网络出版日期:--

作者单位    点击查看

刘伟琪:深圳大学电子科学与技术学院深圳市激光工程重点实验室, 广东 深圳 518060
郭春雨:深圳大学光电工程学院深圳市激光工程重点实验室, 广东 深圳 518060
阮双琛:深圳大学光电工程学院深圳市激光工程重点实验室, 广东 深圳 518060
余 军:深圳大学电子科学与技术学院深圳市激光工程重点实验室, 广东 深圳 518060
陈业旺:深圳大学电子科学与技术学院深圳市激光工程重点实验室, 广东 深圳 518060
罗若恒:深圳大学光电工程学院深圳市激光工程重点实验室, 广东 深圳 518060
朱逸怀:深圳大学光电工程学院深圳市激光工程重点实验室, 广东 深圳 518060

联系人作者:刘伟琪(401042606@qq.com)

备注:刘伟琪(1991-), 男, 硕士研究生, 主要从事光纤激光器种子源及放大器等方面的研究。

【1】Lü Jiantao, Wang Kejia, Chen Guojie. Theoretical investigation of terahertz generation in GaP via difference frequency pumped by dual-wavelength ceramic laser[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061902.
吕健滔, 王可嘉, 陈国杰. 双波长陶瓷激光抽运磷化镓差频产生太赫兹波的理论研究[J]. 激光与光电子学进展, 2015, 52(6): 061902.

【2】Chen Hongli, Wang Hong, Wang Chao, et al. Research of oxidative stress reaction induced by 635 nm/808 nm double wavelength low level laser therapy on CCC-ESF[J]. Laser & Optoelectronics Progress, 2015, 52(8): 081703.
陈洪丽, 王 宏, 王 超, 等. 635 nm/808 nm双波长低能量激光对人成纤维细胞氧化应激反应的研究[J]. 激光与光电子学进展, 2015, 52(8): 081703.

【3】Manzoni C, Polli D, Cerullo G. Two-color pump-probe system broadly tunable over the visible and the near infrared with sub-30 fs temporal resolution[J]. Review of Scientific Instruments, 2016, 77(2): 023103.

【4】Ganikhanov F,Evans C L, Saar B C, et al. High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy[J]. Optics Letters, 2006, 31(12): 1872-1874.

【5】Luo Z Q, Zhou M, Weng J, et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 2010, 35(21): 3709-3711.

【6】Lin H Q, Guo C Y, Ruan S C, et al. Tunable and switchable dual-wavelength dissipative soliton operation of a weak birefringence all-normal-dispersion Yb-doped fiber laser[J]. IEEE Photonics Journal, 2013, 5(5): 1501807.

【7】Wang Feng, Bi Weihong, Fu Xinghu, et al. Dual-wavelength fiber laser based on Er3+-doped superimposed fiber gratings[J]. Chinese J Lasers, 2016, 43(4): 0402002.
王 枫, 毕卫红, 付兴虎, 等. 基于掺铒光纤重叠光栅的双波长光纤激光器[J]. 中国激光, 2016, 43(4): 0402002.

【8】Rusu M, Herda R,Okhotnikov O G, et al. Passively synchronized erbium (1550 nm) and ytterbium (1040 nm) mode-locked fiber lasers sharing a cavity[J]. Optics Letters, 2004, 29(19): 2246-2248.

【9】Zhang M, Kelleher E J R, Pozharov A S, et al. Passive synchronization of all-fiber lasers through a common saturable absorber[J]. Optics Letters, 2011, 36(20): 3984-3986.

【10】Sotor J, Sobon G,Tarka J, et al. Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber[J]. Optics Express, 2014, 22(5): 5536-5543.

【11】Wu D D, Luo Z Q, Xiong F F, et al. Passive synchronization of 1.06- and 1.53- μm fiber lasers Q-switched by a common graphene SA[J]. IEEE Photonics Technology Letters, 2014, 26(14): 1474-1477.

【12】Jia C, Shastri B J, Abdukerim N, et al. Passively synchronized Q-switched and simultaneous mode-locked dual-band Tm3+: ZBLAN fiber laser at 1.48- and 1.85-μm using common graphene saturable absorber[C]. Specialty Optical Fibers, Optical Society of America, 2016: SoTu1G.4.

【13】Tsai T Y, Fang Y C, Huang H M, et al. Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm[J]. Optics Express, 2010, 18(23): 23523-23528.

【14】Dvoyrin V V, Mashinsky V M, Dianov E M. Yb-Bi pulsed fiber lasers[J]. Optics Letters, 2007, 32(5): 451-453.

【15】Li J, Hu T, Jackson S D. Dual wavelength Q-switched cascade laser[J]. Optics Letters, 2012, 37(12): 2208-2210.

【16】Li Jianfeng, Hu T, Jackson S D. Q-switched induced gain switching of a two-transition cascade laser[J]. Optics Express, 2012, 20(12): 13123-13128.

【17】Li Jianfeng, Luo Hongyu, Wang Lele, et al. Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm[J]. Scientific Reports, 2015, 5: 10770.

【18】Walsh B M. Dual wavelength lasers[J]. Laser Physics, 2010, 20(3): 622-634.

【19】Boullet J, Lavoute L, Desfarges B A, et al. Tunable red light source by frequency mixing from dual band Er/Yb co-doped fiber laser[J]. Optics Express, 2006, 14(9): 3936-3941.

【20】Jusoh Z, Harun S, Shahabuddin N, et al. Dual-wavelength erbium-ytterbium co-doped fibre laser operating at 1064 and 1534 nm[J]. Ukrainian Journal of Physical Optics, 2014, 15(3): 118-122.

【21】Han Qun, Ning Jiping, Sheng Zhaoxia. Numerical investigation of the ASE and power scaling of cladding-pumped Er/Yb codoped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 2010, 46(11): 1535-1541.

【22】Han Qun, Yao Yunzhi, Chen Yaofei, et al. Highly efficient Er/Yb-codoped fiber amplifier with an Yb-band fiber bragg grating[J]. Optics Letters, 2015, 40(11): 2634-2636.

【23】Kurkov A S. Q-switched all-fiber lasers with saturable absorbers[J]. Laser Physics Letter, 2011, 8(5): 335-342.

【24】Jackson S D, Dickinson B C, King T A. Sequence lasing in a gain-switched Yb3+, Er3+-doped silica double-clad fiber laser[J]. Applied Optics, 2002, 41(9): 1698-1703.

【25】Yang Jianlong, Tang Yulong, Zhang Rui, et al. Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers[J]. IEEE Journal of Quantum Electronics, 2012, 48(12): 1560-1567.

【26】Yang Jianlong, Tang Yulong, Xu Jianqiu. Development and applications of gain-switched fiber lasers [Invited][J]. Photonics Research, 2013, 1(1): 52-57.

引用该论文

Liu Weiqi,Guo Chunyu,Ruan Shuangchen,Yu Jun,Chen Yewang,Luo Ruoheng,Zhu Yihuai. Dual-Wavelength 1.0 μm Q-Switched and 1.5 μm Gain Switched Pulsed Fiber Laser[J]. Chinese Journal of Lasers, 2017, 44(8): 0801004

刘伟琪,郭春雨,阮双琛,余 军,陈业旺,罗若恒,朱逸怀. 双波长1.0 μm调Q和1.5 μm增益开关脉冲光纤激光器[J]. 中国激光, 2017, 44(8): 0801004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF