首页 > 论文 > 中国激光 > 44卷 > 8期(pp:801005--1)


Formation of Cascaded Longitudinal Electric Field and Convergence of Radially Polarized Light Based on Conical Mirror and Cylindrical Reflection Mirror

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文


径向偏振光聚焦后可以产生很强的纵向电场。以此为出发点, 首先依据基尔霍夫衍射理论, 计算得到了径向偏振光经锥面镜会聚后所形成的横截面呈现零阶贝塞尔函数分布的纵向电场, 分析了会聚区域光场的相干长度和横向宽度与入射光光斑尺寸、锥面镜的锥顶角以及锥面镜出射端半径的关系。在此基础上, 提出采用锥面镜和筒形反射镜的复合结构, 通过设计合适的锥面镜和筒形反射镜参数, 实现纵向电场的级联, 且电场呈周期性分布。分析了筒形反射镜的参数对所形成的级联纵向电场的横向宽度、周期和占空比等的影响。结果表明, 当所采用的锥面镜的锥顶角为60°时, 出射端半径和筒形反射镜的内径均为999.682λ(λ为波长), 可以实现周期长度为1154λ、占空比为1的纵向电场的级联; 当用于电子加速时, 加速区长度甚至可达到米级。这种级联纵向电场的设计将进一步使得电子的加速区长度得到显著增加, 为电子加速到更高能量提供了可能。


The radially polarized light can be tightly focused and then forms a strong longitudinal electric field. The longitudinal electric field which follows the form of zero order Bessel function in cross section is calculated based on the Kirchhoff diffraction theory when radially polarized light is reflected and focused by a conical mirror. The relationships among spot size of incident light, cone-apex angle, radius of the exit end of conical mirror and coherent length and lateral width of the optical field of convergence region are analyzed. With these results, a hybrid structure consisting of a conical mirror and a cylindrical reflection mirror is proposed. When the appropriate parameters of conical mirror and the cylindrical reflection mirror are designed, the cascaded and periodic distribution longitudinal electric field is formed, and then the dependence of the related parameters (including lateral width, period and duty circle) of cascaded longitudinal electric field on parameters of cylindrical reflection mirror is discussed. Results show that a cascaded longitudinal electric field with periodic length of 1154λ and duty circle of 1 is formed when the conical mirror has an cone-apex angle of 60° and the radius of the exit end and the inner diameter of cylindrical reflection mirror are both 999.682λ (λ is the wavelength). This simulation suggests that the acceleration zone length can even reach the meter level when it is used for electronic acceleration. The design of this cascaded longitudinal electric field will further increase the length of the electron acceleration region to a significant extent, which could accelerate the electronics to higher energy.





基金项目:国家自然科学基金(61275206, 61475166, 61405226)、上海市自然科学基金(14ZR1445200)




作者单位    点击查看

谭诗文:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学, 北京 100049
李建郎:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
Ueda Ken-Ichi:日本电气通信大学激光研究所, 东京 182-8585


备注:谭诗文(1992-), 女, 硕士研究生, 主要从事固体激光器以及径向偏振光特性方面的研究。

【1】Mushiake Y, Matsumura K, Nakajima N. Generation of radially polarized optical beam mode by laser oscillation[C]. Proceedings of IEEE, 1972: 1107-1109.

【2】Hall D G. Vector-beam solutions of Maxwell′s wave equation[J]. Optics Letters, 1996, 21(1): 9-11.

【3】Zhan Q W. Cylindrical vector beams: From mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

【4】Quabis S, Dorn R, Eberler M, et al. Focusing light to a tighter spot[J]. Optics Communications, 2000, 179(1/2/3/4/5/6): 1-7.

【5】Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 233901.

【6】Yan Jie, Lu Yonghua, Wang Pei, et al. Study of focal spot of radially polarized beam[J]. Acta Optica Sinica, 2010, 30(12): 3597-3603.
阎 杰, 鲁拥华, 王 沛, 等. 径向偏振光聚焦光斑研究[J]. 光学学报, 2010, 30(12): 3597-3603.

【7】Zheng Xiao, Yang Yanfang, He Ying, et al. Tight focusing of double-ring-shaped Bessel-Gaussian radially polarized beam through a dielectric interface[J]. Acta Optica Sinica, 2016, 36(4): 0426001.
郑 晓, 杨艳芳, 何 英, 等. 双环贝塞尔-高斯径向偏振光束经介质分界面的强聚焦[J]. 光学学报, 2016, 36(4): 0426001.

【8】Cai Xunming, Zhao Jingyun, Fan Menghui, et al. Effect of elliptic annular aperture on focusing of radially polarized beam[J]. Acta Optica Sinica, 2016, 36(3): 0326002.
蔡勋明, 赵晶云, 范梦慧, 等. 椭圆环光阑对径向偏振光聚焦研究的影响[J]. 光学学报, 2016, 36(3): 0326002.

【9】Wang H, Yuan G, Tan W, et al. Spot size and depth of focus in optical data storage system[J]. Optical Engineering, 2007, 46(6): 065201.

【10】Zhan Q W. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 2004, 12(15): 3377-3382.

【11】Peng F, Yao B, Yan S, et al. Trapping of low-refractive-index particles with azimuthally polarized beam[J]. Journal of the Optical Society of America B, 2009, 26(12): 2242-2247.

【12】Liu Z, Jones P H. Fractal conical lens optical tweezers[J]. IEEE Photonics Journal, 2017, 9(1): 1-11.

【13】Allegre O J, Perrie W, Edwardson S P, et al. Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses[J]. Journal of Optics, 2012, 14(8): 085601.

【14】Niziev V G, Nesterov A V. Influence of beam polarization on laser cutting efficiency[J]. Journal of Physics D: Applied Physics, 1999, 32(13): 1455-1461.

【15】Gu M, Kang H, Li X. Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam[J]. Scientific Reports, 2014: 3627.

【16】Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87.

【17】Fontana J R, Pantell R H. A high-energy, laser accelerator for electrons using the inverse cherenkov effect[J]. Journal of Applied Physics, 1983, 54(8): 4285-4288.

【18】Salamin Y I. Low-diffraction direct particle acceleration by a radially polarized laser beam[J]. Physics Letters A, 2010, 374(48): 4950-4953.

【19】Kimura W D, Kim G H, Romea R D, et al. Laser acceleration of relativistic electrons using the inverse cherenkov effect[J]. Physical Review Letters, 1995, 74(4): 546-549.

【20】Kimura W D, Steinhauer L C, Kim G H, et al. Update on the aft inverse cerenkov laser acceleration experiment[C]. Proceedings of the 1993 Particle Accelerator Conference, 1993: 2564-2566.

【21】Goodman J W, Gustafson S C. Introduction to fourier optics[M]. 2nd ed. New York: McGraw-Hill, Inc., 1996: 79-110.

【22】Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light[M]. 2nd ed. Oxford City: Cambridge University Press, 1964: 375-382.

【23】McLeod J H. The axicon: A new type of optical element[J]. Journal of the Optical Society of America, 1954, 44(8): 592-597.

【24】Richards B, Wolf E. Electromagnetic diffraction in optical systems.II. structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1959, 253(1274): 358-379.

【25】Wolf E. Electromagnetic diffraction in optical systems.I. An integral representation of the image field[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1959, 253(1274): 349-357.

【26】Prabakaran K, Chandrasekaran R, Mahadevan G, et al. Tight focusing of generalized cylindrical vector beam with high NA lens axicon[J]. Optics Communications, 2013, 295: 230-234.

【27】Ushakova E E, Kurilkina S N. Formation of Bessel light pulses by means of a conical mirror[J]. Journal of Applied Spectroscopy, 2011, 77(6): 827-831.

【28】Kuntz K B, Braverman B, Youn S H, et al. Spatial and temporal characterization of a Bessel beam produced using a conical mirror[J]. Physical Review A, 2009, 79(4): 043802.

【29】Zhu M N, Cao Q, Gao H. Creation of a 50000 lambda long needle-like field with 0.36 lambda width[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2014, 31(3): 500-504.

【30】Borovikov V A. Uniform stationary phase method[J]. Theoretical & Mathematical Physics, 1994, 2(1): 21-25.

【31】Conde O M, Perez J, Catedra M F. Stationary phase method application for the analysis of radiation of complex 3-D conducting structures[J]. IEEE Transactions on Antennas and Propagation Society, 2001, 49(5): 724-731.

【32】Zhao Tingyu, Liu Qinxiao, Yu Feihong. The point spread function analysis in a wavefront coding system based on stationary phase method[J]. Acta Physica Sinica, 2012, 61(7): 074207.
赵廷玉, 刘钦晓, 余飞鸿. 波前编码系统的点扩散函数稳相法分析[J]. 物理学报, 2012, 61(7): 074207.

【33】Pan Chao. Study on applied research in optics of stationary phase method and ambiguity function[J]. Journal of Hubei Polytechnic University, 2010, 26(4): 39-42.
潘 超. 运用稳相法和模糊函数设计离焦不敏感光学系统[J]. 湖北理工学院学报, 2010, 26(4): 39-42.

【34】Zhou Bingkun, Gao Yizhi, Chen Tirong, et al. Principles of laser [M]. 6th ed. Beijing: National Defense of Industry Press, 2009: 74.
周炳坤, 高以志, 陈倜嵘, 等. 激光原理[M]. 6版. 北京: 国防工业出版社, 2009: 74.

【35】Dyakonov M I, Varshalovich D A. Optical modulation of electron beam by inverse Cerenkov effect[J]. Physics Letters A, 1971, 35(4): 277-278.

【36】Edighoffer J A, Kimura W D, Pantell R H, et al. Free-electron interactions with light using the inverse cerenkov effect[J]. IEEE Journal of Quantum Electronics, 1981, 17(8): 1507-1514.


Tan Shiwen,Li Jianlang,Ueda Ken-Ichi. Formation of Cascaded Longitudinal Electric Field and Convergence of Radially Polarized Light Based on Conical Mirror and Cylindrical Reflection Mirror[J]. Chinese Journal of Lasers, 2017, 44(8): 0801005

谭诗文,李建郎,Ueda Ken-Ichi. 基于锥面镜和筒形反射镜复合结构的径向偏振光会聚及级联纵向电场的形成[J]. 中国激光, 2017, 44(8): 0801005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF