首页 > 论文 > 光子学报 > 46卷 > 7期(pp:715001--1)

基于深度约束的水下稠密立体匹配

Underwater Dense Stereo Matching Based on Depth Constraint

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对双目水下图像匹配不满足空气中常规极线约束的问题, 提出一种基于深度约束的半全局算法以实现水下稠密立体匹配.首先采用深度约束确定匹配过程的深度约束搜索区域.然后, 基于深度约束区域将绝对差值和梯度计算推广到二维区域并进行加权融合.在深度约束区域内的搜索过程中, 采用胜者为王的策略确定某一视差值下的最佳行差及最佳行差下的匹配代价, 并将其作为能量函数的数据项应用于半全局算法中, 进行匹配代价的聚合.最后采用抛物线拟合法得到亚像素级的稠密视差图.在水下图片上进行的稠密立体匹配结果表明: 相较于其他半全局匹配算法, 本文算法在极大提高运行速度的前提下, 可以获得良好的水下稠密立体匹配效果.

Abstract

In order to solve the problem that stereo matching of binocular underwater image could not meet conventional epipolar constraint in the air, a semi-global algorithm for dense stereo matching of underwater image based on depth constraint was proposed. Firstly, a depth constraint was used to determine the searching area during stereo matching; based on depth constraint area, the absolute difference function and gradient calculation were extended to two dimensional directions and then fused by weighted factor. During candidate searching in the depth constraint area, the winner-takes-all was adopted to get the best line aberration under each disparity and their corresponding cost values, these cost values were regarded as data item of semi-global algorithm and an initial disparity map was obtained. Finally the sub-pixel dense disparity map was obtained by parabolic fit. Experiments were performed on underwater image to obtain dense disparity map, the results show that compare with other semi-global algorithms, the proposed algorithm could greatly accelerate underwater stereo matching and improve accuracy of matching.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/gzxb20174607.0715001

基金项目:河北省自然科学基金(Nos.D2014203153, F2015203212)资助

收稿日期:2016-11-28

修改稿日期:2017-03-29

网络出版日期:--

作者单位    点击查看

李雅倩:燕山大学 工业计算机控制工程河北省重点实验室, 河北 秦皇岛 066004
张岩松:燕山大学 工业计算机控制工程河北省重点实验室, 河北 秦皇岛 066004
李海滨:燕山大学 工业计算机控制工程河北省重点实验室, 河北 秦皇岛 066004
张文明:燕山大学 工业计算机控制工程河北省重点实验室, 河北 秦皇岛 066004
贾璐:燕山大学 工业计算机控制工程河北省重点实验室, 河北 秦皇岛 066004

联系人作者:李雅倩(yaqian.li@gmail.com)

备注:李雅倩(1982-), 女, 副教授, 博士, 主要研究方向为计算机视觉.

【1】ZHANG H, SHAO N, MENG X, et al. Fast image matching method and its applications in underwater positioning[C]. 2010 IEEE International Conference on Electrical and Control Engineering, 2010: 970-973.

【2】SERVOS J, SMART M, WASLANDER S L. Underwater stereo SLAM with refraction correction[C].IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013: 3350-3355.

【3】GEDGE J, GONG M, YANG Y H. Refractive epipolar geometry for underwater stereo matching[C].Crv 2011, Canadian Conference on Computer and Robot Vision, St Johns, Newfoundland, Canada, 2011: 146-152.

【4】ZHANG Qiang, HAO Kai, LI Hai-bin. Research on scale invariant feature transform feature matching based on underwater curve constraint[J].Acta Optica Sinica, 2014, 34(2): 0215003.
张强, 郝凯, 李海滨. 水下环境中基于曲线约束的SIFT特征匹配算法研究[J]. 光学学报.2014.34(2): 0215003.

【5】ZHANG Qiang, LIU Ting-ting, LI Hai-bin, et al. Research on region matching for underwater images based on optimum searching area[J].Acta Optica Sinica, 2014, 34(6): 177-182.
张强, 刘婷婷, 李海滨,等. 基于最佳搜索域的水下图像区域匹配算法研究[J]. 光学学报, 2014,34(6): 177-182.

【6】HUANG R, GAO X, YANG Y. The underwater camera calibration[J]. Journal of Computational Information Systems, 2014, 10(24): 10739-10746.

【7】HIRSCHM& H, LLER. Accurate and efficient stereo processing by semi-global matching and mutual information[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 807-814.

【8】ZHU Shi-ping, LI Zheng. A stereo matching algorithm using improved gradient and adaptive window[J]. Acta Optica Sinica, 2015, 35(1): 0110003.
祝世平, 李政. 基于改进梯度和自适应窗口的立体匹配算法[J]. 光学学报, 2015, 35(1): 0110003.

【9】YOON K J, KWEON I S. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006, 28(4): 650-656.

【10】MEI X, SUN X, ZHOU M, et al. On building an accurate stereo matching system on graphics hardware[C]. 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 2011(21): 467-474.

【11】JIAO J O, WANG R, WANG W, et al. Cost-volume filtering-based stereo matching with improved matching cost and secondary refinement[C].IEEE International Conference on Multimedia and Expo, 2014: 1-6.

【12】ZHANG K, LU J, LAFRUIT G. Cross-based local stereo matching using orthogonal integral images[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2009, 19(7): 1073-1079.

【13】DONG Xin, WANG Guo-zhong, FAN Tao, et al. Image enhancement based on stereo matching algorithm[J]. Video Engineering, 2014, 38(03): 1-3.
董欣, 王国中, 范涛,等. 一种基于梯度增强的立体匹配算法[J]. 电视技术, 2014, 38(03): 1-3.

【14】HIRSCHMULLER H. Stereo processing by semi-global matching and mutual information[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2008, 30(2): 328-341.

【15】EGNAL G. Mutual information as a stereo correspondence measure[J]. Technical Reports, 2000, 25(1): 109-113.

【16】ZHANG Wen-ming, Deng Qian-xue, ZHANG Qiang, et al. Underwater images based on non-parallel system transformation model [J]. Acta Photonica Sinica, 2015, 44(2): 0211002.
张文明, 邓茜雪, 张强,等. 基于非平行系统的水下图像转化模型[J]. 光子学报, 2015, 44(2): 0211002.

引用该论文

LI Ya-qian,ZHANG Yan-song,LI Hai-bin,ZHANG Wen-ming,JIA Lu. Underwater Dense Stereo Matching Based on Depth Constraint[J]. ACTA PHOTONICA SINICA, 2017, 46(7): 0715001

李雅倩,张岩松,李海滨,张文明,贾璐. 基于深度约束的水下稠密立体匹配[J]. 光子学报, 2017, 46(7): 0715001

被引情况

【1】李佳宽,孙春生,胡艺铭,于洪志. 一种基于 ORB特征的水下立体匹配方法. 光电工程, 2019, 46(4): 180456--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF