首页 > 论文 > 强激光与粒子束 > 29卷 > 9期(pp:95001--1)

“荧光-1”实验装置研制与调试

Development and test of the “Yingguang-1” program-discharged pulsed power device

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

“荧光-1”是一套分时放电的大电流脉冲功率实验装置,主要用于反场构形预加热磁化等离子体靶(FRC)形成的物理过程、高温高密度磁化等离子体约束特性等研究,未来可作为磁化靶聚变研究的等离子体注入器。主要介绍该实验装置的构成及其调试实验结果,并简要描述在该装置上开展的FRC等离子体靶初步物理实验进展。调试实验结果表明,“荧光-1”实验装置初始磁场、磁镜、气体电离、θ箍缩分系统的放电电流/磁场或感应电场可分别达到110 kA/0.3 T,10 kA/1.2 T,400 kA/0.25 kV/cm,1.7 MA/3.4 T。初步物理实验获得的FRC等离子体靶参数为: 靶分界面半径约4 cm、等离子体密度3.5×1016 cm-3、等离子体温度约200 eV、靶寿命约3 μs,同时清晰地观察到了FRC靶形成物理过程。分幅相机获取图像与二维磁流体程序计算图像基本吻合,验证了该装置的物理设计思路,也展示了该装置具备的物理实验能力。

Abstract

“Yingguang-1” is a multi-bank program-discharged pulsed power device for investigating the formation, confinement and instability of the high temperature and high density field reversed configuration (FRC) plasma injector in magnetized target fusion (MTF), which has been constructed at the Institute of Fluid Physics (IFP) in 2014. In this paper we will present the composition and the parameters of the “Yingguang-1” device, and briefly describe the progress on the experiments of the FRC formation. In construction of the “Yingguang-1” device, the rail gap switch with the peak current of 400 kA and the corresponding trigger system with the voltage greater than 200 kV and rise time less than 20 ns were firstly developed. Utilizing the mixture of 25% sulfur hexafluoride (SF6) and 75% nitrogen (N2) as the insulation gas, the switch could operate from 50 kV to 150 kV and the maximum offset of the start-up time would be less than 50 ns during repetitive test. By the high speed frame camera more than 5 discharged channels were observed in the switch. Experimental results of the pulsed power system show that the peak current/magnetic fields were 110 kA/0.3 T, 10 kA/1.2 T and 1.7 MA/3.4 T in the bias, mirror and θ-pinch circuit with the quarter cycle of 80 μs, 700 μs and 3.8 μs when the charging voltage were set to 7 kV, 7 kV and ±60 kV respectively. After the construction of “Yingguang-1” device the preliminary experiments of the FRC target formation was conducted. With the H2 gas of 8.5 Pa, the plasma target of density 3.5×1016cm-3, separatrix radius 4 cm, length 17 cm, average total temperature 200 eV and life time 3 μs approximately equals to the half pulse width of the reversed field were obtained through the θ-pinch method when the bias, mirror, ionization and θ-pinch bank were charged to 5 kV, 5 kV, 55 kV and ±45 kV respectively. The images from the end-on frame camera demonstrate the formation of FRC and agree with the results from the two dimension magneto hydrodynamics code (2D-MHD).

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TM833;TM89

DOI:10.11884/hplpb201729.170077

所属栏目:脉冲功率技术

基金项目:国家自然科学基金面上项目(11375163); 中国工程物理研究院基金项目(2011B0402009)

收稿日期:2017-03-09

修改稿日期:2017-06-06

网络出版日期:--

作者单位    点击查看

方东凡:中国工程物理研究院 流体物理研究所, 脉冲功率科学与技术重点实验室, 四川 绵阳 621999
孙奇志:中国工程物理研究院 流体物理研究所, 脉冲功率科学与技术重点实验室, 四川 绵阳 621999
贾月松:中国工程物理研究院 流体物理研究所, 脉冲功率科学与技术重点实验室, 四川 绵阳 621999
刘 伟:中国工程物理研究院 流体物理研究所, 脉冲功率科学与技术重点实验室, 四川 绵阳 621999
秦卫东:中国工程物理研究院 流体物理研究所, 脉冲功率科学与技术重点实验室, 四川 绵阳 621999
田 青:中国工程物理研究院 流体物理研究所, 脉冲功率科学与技术重点实验室, 四川 绵阳 621999
韩文辉:中国工程物理研究院 流体物理研究所, 脉冲功率科学与技术重点实验室, 四川 绵阳 621999
池 原:中国工程物理研究院 流体物理研究所, 脉冲功率科学与技术重点实验室, 四川 绵阳 621999
刘正芬:中国工程物理研究院 流体物理研究所, 脉冲功率科学与技术重点实验室, 四川 绵阳 621999
李 军:中国工程物理研究院 流体物理研究所, 脉冲功率科学与技术重点实验室, 四川 绵阳 621999
赵小明:中国工程物理研究院 流体物理研究所, 脉冲功率科学与技术重点实验室, 四川 绵阳 621999

联系人作者:方东凡(fangdongfan1208@126.com)

备注:方东凡(1980—),男,硕士,助理研究员,主要从事脉冲功率技术及应用研究。

【1】Taccetti J M, Intrator T P, Wurden G A, et al. FRX-L: A field-reversed configuration plasma injector for magnetized target fusion[J]. Review of Scientifc Instruments, 2003, 74(10): 4314-4323.

【2】Degnan J H, Amdahl D J, Brown A, et al. Experimental and computational progress on liner implosions for compression of FRCs[J]. IEEE Trans Plasma Science, 2008, 36(1): 80-91.

【3】Finn J M, Sudan R N. Field-reversed configurations with a component of energetic particles[J]. Nuclear Fusion, 1982, 22(11): 1443-1518.

【4】Armstrong W T, Linford R K, Lipson J, et al. Field-reversed experiments(FRX) on compact toroid[J]. Physics of Fluids, 1981, 24(11): 2068-2089.

【5】Siemon R E, Armstrong W T, Bartsch R R. Plasma physics and controlled nuclear fusion research, 1982 [C]//Proceedings of an International Conference, 1982.

【6】Intrator T, Zhang S Y, Degnan J H, et al. A high density field reversed configuration(FRC) target for magnetized target fusion: First internal profile measurements of a high density FRC[J]. Physics of Plasmas, 2004, 11(5): 2580-2585.

【7】Kumashiro S, Takahashi T, Ooi M, et al. Review of field-reversed configurations: Physics[J]. J Phys Soc Jpn, 1993, 62: 1539.

【8】Ono Y, Morita A, Katsurai M, et al. Experimental investigation of three-dimensional magnetic reconnection by use of two colliding spheromaks[J].Physics of Fluids B: Plasma Physics, 1993, 5(10): 3691-3701.

【9】Kawamori E and Ono Y. Effect of ion skin depth on relaxation of merging spheromaks to a field-reversed configuration[J]. Physical Review Letters, 2005, 95: 085003.

【10】Yamada M, Ji H, Hsu S, et al. Study of driven magnetic reconnection in a laboratory plasma[J]. Physics of Plasmas, 1997, 4(5): 1936-1944.

【11】Binderbauer M W, Guo H Y, Tuszewski M, et al. Dynamic formation of a hot field reversed configuration with improved confinement by supersonic merging of two colliding high-β compact toroids[J]. Physical Review Letters, 2010, 105: 045003.

【12】Hoffman A L, Guo H Y, Slough J T, et al. The TCS rotating magnetic field FRC current-drive experiment[J]. Fusion Science and Technology, 2002, 41(2): 92-106.

【13】Guo H Y, Hoffman A L, Milroy R D. Rotating magnetic field current drive of high-temperature field reversed configurations with high ζ scaling[J]. Physics of Plasmas, 2007, 14: 112502.

【14】Munsat T, Ellison C L, Light A, et al. The Colorado FRC experiment[J]. Journal of Fusion Energy, 2008, 27(1/2): 82-86.

【15】Harris W S, Trask E, Roche T, et al. Ion flow measurements and plasma current analysis in the Irvine Field Reversed Configuration[J]. Physics of Plasmas, 2009, 16: 112509.

【16】孙奇志, 方东凡, 刘伟, 等. “荧光-1”实验装置物理设计[J]. 物理学报,2013, 62: 078407.(Sun Qizhi, Fang Dongfan, Liu Wei, et al. Phsical design of the “Ying-Guang 1” device. Acta Physica Sinica, 2013, 62: 078407)

【17】Fang Dongfan, Sun Qizhi, Zhao Xiaoming, et al. Design of a fully-fiber multi-chord interferometer and a new phase-shift demodulation method for field-reversed configuration[J]. Review of Scientific Instruments, 2014, 85: 053510.

【18】Tuszewski M. Field reversed configuration[J]. Nuclear Fusion, 1988, 28(11): 2033-2092.

【19】Green T S, Newton A A. Diffusion of antiparallel bias magnetic field during the initial stages of a theta-pinch[J].Physics of Fluids, 1966, 9(9): 1386-1388.

【20】Zhang S, Intrator T P, Wurden G A, et al. Confinement analyses of the high-density field-reversed configuration plasma in the field-reversed configuration experiment with a liner[J]. Physics of Plasmas, 2005, 12: 052513.

【21】李璐璐, 张华, 杨显俊. 反场构形的二维磁流体力学描述[J]. 物理学报, 2014, 63: 165202.(Li Lulu, Zhang Hua, Yang Xianjun. Two-dimensional magneto-hydrodynamic description of field reversed configuration. Acta Physica Sinica, 2014, 63: 165202)

引用该论文

Fang Dongfan,Sun Qizhi,Jia Yuesong,Liu Wei,Qin Weidong,Tian Qing,Han Wenhui,Chi Yuan,Liu Zhengfen,Li Jun,Zhao Xiaoming. Development and test of the “Yingguang-1” program-discharged pulsed power device[J]. High Power Laser and Particle Beams, 2017, 29(9): 095001

方东凡,孙奇志,贾月松,刘 伟,秦卫东,田 青,韩文辉,池 原,刘正芬,李 军,赵小明. “荧光-1”实验装置研制与调试[J]. 强激光与粒子束, 2017, 29(9): 095001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF