首页 > 论文 > 激光与光电子学进展 > 54卷 > 9期(pp:92803--1)

结合相位一致和分水岭变换的高分辨率遥感影像分割方法

Segmentation of High-Resolution Remote Sensing Image Combining Phase Consistency with Watershed Transformation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对噪声导致高分辨遥感影像分割存在过分割或者欠分割的问题, 提出结合相位一致和分水岭变换的高分辨率影像分割方法。该方法首先采用基于光谱相似性的相位一致的模型方法来获得边缘响应幅度, 再采用自动标记分水岭算法对影像进行分割; 基于相邻分割对象的空间位置、形状、面积等特征多重约束, 提出相邻分割对象合并代价函数模型, 对分割结果进行优化并获取最终分割结果。选择典型地区实验影像进行分割实验, 通过目视评价和监督评价, 并与典型分割方法进行比较, 验证所提分割方法的有效性。

Abstract

In consideration of the problem of over-segmentation or under-segmentation in high-resolution remote sensing image segmentation that the noise leads to, a high-resolution image segmentation method with phase consistency and watershed transformation is proposed. Firstly, the phase-consistent model method with spectral similarity is adopted to obtain the edge response amplitude, and then the automatic marker watershed algorithm is adopted to segment the image. Based on the multiple restrictions for the features, such as spatial position, shape and area of adjacent segmentation objects, adjacent segmentation object merging cost function model is proposed to optimize the segmentation result and obtain the final segmentation result. Experimental images of the typical area are selected for the segmentation experiment. The effectiveness of the proposed method is verified by visual evaluation, supervision evaluation and comparison with the typical segmentation methods.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:P23

DOI:10.3788/lop54.092803

所属栏目:遥感与传感器

基金项目:国家自然科学基金(41101452)、高等学校博士学科点专项科研基金(20112121120003)、辽宁省教育厅科研项目(LJYL010)

收稿日期:2017-03-16

修改稿日期:2017-05-08

网络出版日期:--

作者单位    点击查看

陈洋:辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000中国测绘科学研究院, 北京 100830
范荣双:中国测绘科学研究院, 北京 100830
王竞雪:辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000
吴增林:辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000

联系人作者:陈洋(874153187@qq.com)

备注:陈洋(1991-), 男, 硕士研究生, 主要从事遥感影像分割、地物信息智能提取等方面的研究。

【1】Liu Dawei, Han Ling, Han Xiaoyong. High spatial resolution remote sensing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4): 0428001.
刘大伟, 韩 玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究[J]. 光学学报, 2016, 36(4): 0428001.

【2】Wang Jianing. Hyperspectral image classification based on joint sparse representation and morphological feature extraction[J]. Laser & Optoelectronics Progress, 2016, 53(8): 082801.
王佳宁. 基于联合稀疏表示与形态特征提取的高光谱图像分类[J]. 激光与光电子学进展, 2016, 53(8): 082801.

【3】Baatz M, Schape A. Object-oriented and multi-scale image analysis in semantic networks[C]. Proceedings of the 2nd International Symposium on Operationalization of Remote Sensing, 1999.

【4】Wu Yiquan, Tao Feixiang. Multispectral and panchromatic image fusion based on improved projected gradient NMF in NSST domain[J]. Acta Optica Sinica, 2015, 35(4): 0410005.
吴一全, 陶飞翔. 改进投影梯度NMF的NSST域多光谱与全色图像融合[J]. 光学学报, 2015, 35(4): 0410005.

【5】Angulo J, Velasco-Forero S, Chanussot J. Multiscale stochastic watershed for unsupervised hyperspectral image segmentation[C]. IEEE International Geoscience and Remote Sensing Symposium, 2009: 93-96.

【6】Xiao Pengfeng, Feng Xuezhi, Zhao Shuhe, et al. Segmentation of high-resolution remotely sensed imagery based on phase congruency[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(2): 32-37.
肖鹏峰, 冯学智, 赵书河, 等. 基于相位一致的高分辨率遥感图像分割方法[J]. 测绘学报, 2007, 36(2): 32-37.

【7】Wang Ke, Gu Xingfa, Yu Tao, et al. Segmentation of high-resolution remotely sensed imagery combining spectral similarity with phase congruency[J]. Journal of Infrared and Millimeter Waves, 2013, 32(1): 73-79.
王 坷, 顾行发, 余 涛, 等. 结合光谱相似性与相位一致模型的高分辨率遥感图像分割方法[J]. 红外与毫米波学报, 2013, 32(1): 73-79.

【8】Liu Jing, Li Peijun. A high resolution image segmentation method by combined structural and spectral characteristics[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(5): 466-473.
刘 婧, 李培军. 结合结构和光谱特征的高分辨率影像分割方法[J]. 测绘学报, 2014, 43(5): 466-473.

【9】Chen Jie, Deng Min, Xiao Pengfeng, et al. Multi-scale watershed segmentation of high-resolution multi-spectral remote sensing image using wavelet transform[J]. Journal of Remote Sensing, 2011, 15(5): 908-926.
陈 杰, 邓 敏, 肖鹏峰, 等. 利用小波变换的高分辨率多光谱遥感图像多尺度分水岭分割[J]. 遥感学报, 2011, 15(5): 908-926.

【10】Liu Chun, Hong Liang, Chen Jie, et al. Fusion of pixel-based and multi-scale region-based features for the classification of high-resolution remote sensing image[J]. Journal of Remote Sensing, 2015, 19(2): 228-239.
刘 纯, 洪 亮, 陈 杰, 等. 融合像素一多尺度区域特征的高分辨率遥感影像分类算法[J]. 遥感学报, 2015, 19(2): 228-239.

【11】Morrone M C, Owens R. Feature detection from local energy[J]. Patter Recognition Letters, 1987, 6(5): 303-313.

【12】Kovesi P. Image features from phase congruency[J]. Journal of Computer Vision Research, 1999, 1(3): 1-26.

【13】Luo Ling, Xie Mei, Chen Shan. Watershed segmentation based on multi-scale morphological filtering[J]. Journal of Computer-Aided Design & Computer Graphics, 2004, 16(2): 168-173.
罗 玲, 解 梅, 陈 杉. 基于多尺度形态滤波的分水岭图像分割方法[J]. 计算机辅助设计与图形学学报, 2004, 16(2): 168-173.

【14】Xu Tianzhi, Zhang Guicang, Jia Yuan. Color image segmentation based on morphology gradients and watershed algorithm[J]. Computer Engineering and Applications, 2016, 52(11): 200-203.
徐天芝, 张贵仓, 贾 园. 基于形态学梯度的分水岭彩色图像分割[J]. 计算机工程与应用, 2016, 52(11): 200-203.

【15】Ji Xiaole. Research on object-oriented evaluation method of remote sensing image classification accuracy[M]. Beijing: Beijing Normal University, 2012.
纪晓乐. 面向对象的遥感影像分类精度评价方法研究[M]. 北京: 北京师范大学, 2012.

【16】Du Fenglan, Tian Qingjiu, Xia Xueqi, et al. Object-oriented image classification analysis and evaluation[J]. Remote Sensing Technology and Application, 2004, 19(1): 20-23.
杜凤兰, 田庆久, 夏学齐, 等. 面向对象的地物分类法分析与评价[J]. 遥感技术与应用, 2004, 19(1): 20-23.

【17】Liu Y, Bian L, Meng Y H, et al. Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 68(2): 144-156.

【18】Tong H, Maxwell T, Zhang Y, et al. A supervised and fuzzy-based approach to determine optimal multi-resolution image segmentation parameters[J]. Photogrammetric Engineering and Remote Sensing, 2012, 78(10): 1029-1044.

【19】Zhang Y J. A survey on evaluation methods or image segmentation[J]. Pattern Recognition Letters, 1996, 9(8): 1335-1346.

引用该论文

Chen Yang,Fan Rongshuang,Wang Jingxue,Wu Zenglin. Segmentation of High-Resolution Remote Sensing Image Combining Phase Consistency with Watershed Transformation[J]. Laser & Optoelectronics Progress, 2017, 54(9): 092803

陈洋,范荣双,王竞雪,吴增林. 结合相位一致和分水岭变换的高分辨率遥感影像分割方法[J]. 激光与光电子学进展, 2017, 54(9): 092803

被引情况

【1】陈 洋,范荣双,王竞雪,吴增林,孙汝星. 结合最小噪声分离变换和卷积神经网络的高分辨影像分类方法. 激光与光电子学进展, 2017, 54(10): 102801--1

【2】陈洋,范荣双,王竞雪,陆婉芸,朱红,楚清源. 基于深度学习的资源三号卫星遥感影像云检测方法. 光学学报, 2018, 38(1): 128005--1

【3】韩雪莹,王琪,葛乃馨. 相位调制潜像对图像呈色效果的影响. 激光与光电子学进展, 2018, 55(7): 71011--1

【4】汪丽华,涂铮铮,王泽梁. 基于流形正则化随机游走的图像显著性检测. 激光与光电子学进展, 2018, 55(12): 121005--1

【5】滕文秀,温小荣,王妮,施慧慧. 基于迭代H-minima改进分水岭算法的高分辨率遥感影像单木树冠提取. 激光与光电子学进展, 2018, 55(12): 122802--1

【6】滕文秀,温小荣,王妮,施慧慧. 基于深度迁移学习的无人机高分影像树种分类与制图. 激光与光电子学进展, 2019, 56(7): 72801--1

【7】吴正平,马占稳,颜华,张兆蒙,尹凡. 基于图像的多方向灰度波动局部阈值分割方法. 激光与光电子学进展, 2020, 57(6): 61016--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF