中国激光, 2017, 44 (9): 0902004, 网络出版: 2017-09-07   

248 nm准分子激光刻蚀的无裂损石英玻璃表面微通道 下载: 926次

Crack-Free Silica Glass Surface Micro-Grooves Etched by 248 nm Excimer Lasers
作者单位
北京工业大学激光工程研究院, 北京 100124
摘要
利用248 nm纳秒准分子激光, 采用掩模投影和石英玻璃前表面直写刻蚀的方法, 研究了激光脉冲能量密度、重复频率、扫描次数对微通道裂损的影响规律, 分析了石英玻璃激光刻蚀及裂损的机理。结果表明, 248 nm纳秒准分子激光刻蚀石英玻璃的机理为光致电离及热烧蚀的共同作用; 无裂损刻蚀JGS1型石英玻璃的激光能量密度阈值范围为16~30 J·cm-2, 刻蚀率可达每脉冲500 nm; 随着激光重复频率及扫描次数的增加, 微通道容易因热积累及等离子体微爆炸冲击作用而裂损。基于优化的激光加工参数, 当微通道宽度小于100 μm时, 可以实现无裂损的直线型(深度小于或等于50 μm)及圆弧型(深度小于或等于28.5 μm)微通道的加工。
Abstract
With the method of mask projection and direct-writing etching on the front surface of silica glass by a 248 nm nanosecond excimer laser, the influence laws of laser pulse energy density, repetition frequency, scanning times on micro-groove cracks are studied, and the mechanisms of laser etching and cracking of silica glass are analyzed. The results show that the mechanism of silica glass etched by a 248 nm nanosecond pulse excimer laser is the joint effects of photoionization and thermal ablation. The laser energy density threshold range for the crack-free etching of JGS1 silica glass is 16-30 J·cm-2 and the etching rate can be up to 500 nm per pulse. With the increase of laser repetition frequency and scanning times, the micro-grooves are easily cracked because of the heat accumulation and plasma micro-explosion shocking. Based on the optimized laser processing parameters, when the width of micro-grooves is less than 100 μm, the processing of crack-free linear-type (the depth is less than or equal to 50 μm) and circular-arc-type (the depth is less than or equal to 28.5 μm) micro-grooves can be achieved.

杨桂栓, 陈涛, 陈虹. 248 nm准分子激光刻蚀的无裂损石英玻璃表面微通道[J]. 中国激光, 2017, 44(9): 0902004. Yang Guishuan, Chen Tao, Chen Hong. Crack-Free Silica Glass Surface Micro-Grooves Etched by 248 nm Excimer Lasers[J]. Chinese Journal of Lasers, 2017, 44(9): 0902004.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!