首页 > 论文 > 中国激光 > 44卷 > 9期(pp:906009--1)

四象限探测器的跟踪与通信复合探测技术

Simultaneous Detection Technology of Tracking and Communication Based on Four-Quadrant Detector

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对空间激光通信系统小型化设计的需求, 提出了使用雪崩二极管(APD)型四象限探测器实现跟踪与通信复用的方案, 用以降低通信系统的体积和功耗, 提高光能量的利用率。简述了系统总体方案的组成与工作原理, 在室内搭建测试平台, 对跟踪与通信复用模式下的数据采集、通信速率、极限灵敏度、跟踪精度等探测性能进行测试。结果表明: 采用靶面直径为4 mm的APD型InGaAs四象限探测器, 在曼彻斯特编码、强度调制/直接探测条件下, 通信速率可达10 Mb/s, 探测灵敏度为-35.4 dBm, 误码率为10-6。当光斑直径为四象限探测器光敏面直径的一半左右时, 光斑位置检测的最小分辨率为2 μm, 探测范围可达0.8 mm, 角分辨率为0.8 μrad。初步验证了使用APD型四象限探测器用于跟踪与通信复合探测技术的可行性, 为空间激光通信系统小型化设计提供技术支持。

Abstract

Aimming at the space laser communication system requirement of miniaturization, a scheme of using the avalanche photo diode (APD) type four-quadrant detector to complete the tracking and communication is proposed. This communication system could effectively reduce the volume and power consumption and improve the light energy utilization. The overall scheme of composition and working principle are introduced, the experiment is established in laboratory, and the detection performance which includes data collection, communications rate, limiting sensibility, tracking accuracy is tested. Experimental results show that by use of the APD type InGaAs four-quadrant detector with photosensitive surface diameter of 4 mm, the communication rate is 10 Mb/s, the detection sensitivity is -35.4 dBm and the bit error rate is 10-6 under conditions of Manchester code, intensity modulation/direct detection. The minimum position resolution of the spot position detection is 2 μm, the detecting range of QD is about 0.8 mm, and the angular resolution is 0.8 μrad while the diameter of light spot is about half of the diameter of the photosensitive surface.The feasibility of using the APD type four-quadrant detector for simultaneous tracking and communication is demonstrated, which provides technical support for design of the whole space laser communication system requirement of miniaturization.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN929.1

DOI:10.3788/CJL201744.0906009

所属栏目:光纤光学与光通信

收稿日期:2017-04-17

修改稿日期:2017-05-31

网络出版日期:--

作者单位    点击查看

范新坤:长春理工大学空间光电技术研究所, 吉林 长春 130022长春理工大学空地激光通信技术国防重点学科实验室, 吉林 长春 130022
张磊:长春理工大学空间光电技术研究所, 吉林 长春 130022
宋延嵩:长春理工大学空间光电技术研究所, 吉林 长春 130022
江伦:长春理工大学空间光电技术研究所, 吉林 长春 130022
吴凯:长春理工大学空间光电技术研究所, 吉林 长春 130022长春理工大学空地激光通信技术国防重点学科实验室, 吉林 长春 130022

联系人作者:范新坤(fxk0823@163.com)

备注:范新坤(1990-), 男, 硕士研究生, 主要从事空间激光通信系统高精度激光光斑识别与检测技术方面的研究。

【1】Song Yansong, Chang Shuai, Tong Shoufeng, et al. The feature analysis of the airborne laser communication system and airborne laser communication experiment[J]. Chinese J Lasers, 2016, 43(12): 1206004.
宋延嵩, 常 帅, 佟首峰, 等. 航空激光通信系统的特性分析及机载激光通信实验[J]. 中国激光, 2016, 43(12): 1206004.

【2】Fan Xinkun, Zhang Lei, Tong Shoufeng, et al. Influence of sky background light on space laser communication system[J]. Laser & Optoelectronics Progress, 2017, 54(7): 070601.
范新坤, 张 磊, 佟首峰, 等. 天空背景光对空间激光通信系统的影响[J]. 激光与光电子学进展, 2017, 54(7): 070601.

【3】Zhao Xin, Song Yansong, Tong Shoufeng, et al. Dynamic demonstration experiment of acquisition, pointing and tracking system in space laser communications[J]. Chinese J Lasers, 2014, 41(3): 0305005.
赵 馨, 宋延嵩, 佟首峰, 等. 空间激光通信捕获、对准、跟踪系统动态演示实验[J]. 中国激光, 2014, 41(3): 0305005.

【4】Qian Feng, Jia Jianjun, Zhang Liang, et al. Positioning accuracy of spot-detecting camera in acquisition, tracking, pointing system[J]. Chinese J Lasers, 2013, 40(2): 0205007.
钱 锋, 贾建军, 张 亮, 等. 捕获、跟踪、瞄准系统中光斑探测相机的定位精度[J]. 中国激光, 2013, 40(2): 0205007.

【5】Liu Shihui. Research of military laser communication system based on QD for simultaneous communication and tracking[D]. Changchun: Changchun University of Science and Technology, 2014: 26-28.
刘仕辉. 基于QD的通信与跟踪复合式军用激光通信系统研究[D]. 长春: 长春理工大学, 2014: 26-28.

【6】Gu Ye, Tong Shoufeng, Song Yansong, et al. Performance research on four-quadrant detector in communication and tracking compound mode[J]. Chinese J Lasers, 2015, 42 (s1): s114002.
谷 野, 佟首峰, 宋延嵩, 等. 四象限探测器在通信与跟踪复用模式下的性能研究[J]. 中国激光, 2015, 42(s1): s114002.

【7】Han Cheng, Bai Baoxing, Yang Huamin, et al. Study four-quadrant detector in the space laser communication[J]. Chinese J Lasers, 2009, 36(8): 2030-2034.
韩 成, 白宝兴, 杨华民, 等. 自由空间激光通信四象限探测器性能研究[J].中国激光, 2009, 36(8): 2030-2034.

【8】Zhang Hui, Chen Yunshan, Geng Tianwen, et al. Study on main factors affecting position detection accuracy of four-quadrant detector[J].中国激光, 2015, 42(12): 1217002.
张 辉, 陈云善, 耿天文, 等. 四象限探测器位置检测精度的主要影响因素研究[J]. 中国激光, 2015, 42(12): 1217002.

【9】Ferraro M S, Mahon R, Rabinovich W S, et al. InGaAs avalanche photodiode arrays for simultaneous communications and tracking[C]. SPIE, 2011, 8162: 81620D.

【10】Yu Xiaonan, Tong Shoufeng, Zhao Xin, et al. The simulation system of the beacon pointing and acquisition process of the satellite laser communication[J]. Chinese J Lasers, 2014, 41(8): 0805007.
于笑楠, 佟首峰, 赵 馨, 等. 基于合作信标的卫星激光通信瞄准捕获仿真系统[J]. 中国激光, 2014, 41(8): 0805007.

【11】Chen Yunshan. Position resolution of quadrant detector for uniform spot[J]. Optics and Precision Engineering, 2015, 23(10): 113-119.
陈云善. 四象限探测器的均匀光斑位置分辨率[J]. 光学 精密工程, 2015, 23(10): 113-119.

【12】Jiang Huilin. The technologies and systems of space laser communication[M]. Beijing: National Defense Industry Press, 2010: 81-91.
姜会林. 空间激光通信技术与系统[M]. 北京: 国防工业出版社, 2010: 81-91.

【13】Zhao Xin, Tong Shoufeng, Liu Yunqing, et al. Application research on four-quadrant detector in space laser communication system[J]. Journal of Optoelectronics·Laser, 2010, 21(1): 46-49.
赵 馨, 佟首峰, 刘云清, 等. 四象限探测器在空间激光通信中应用研究[J]. 光电子·激光, 2010, 21(1): 46-49.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF