首页 > 论文 > 中国激光 > 44卷 > 9期(pp:901010--1)

半径5 μm的定向输出圆盘形微腔激光器

Unidirectional-Emission Circular Microcavity Laser with Radius of 5 μm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于三维时域有限差分法, 对半径为5 μm的径向直连波导微腔激光器的模式及定向输出特性进行研究, 得到了波长在1550 nm附近的高品质因子(Q)横电模的Q值与光场分布特性。基于半导体平面加工工艺制备了AlGaInAs/InP圆盘形微腔激光器, 微腔半径为5 μm, 波导宽度为1 μm。该激光器在298 K下实现了连续单模输出, 阈值电流为4 mA。在注入电流为9 mA时, 激光器的边模抑制比可达33.4 dB。基于速率方程拟合了激光器模式强度随注入电流的变化, 得到激光器的自发辐射因子约为5.5×10-3。

Abstract

On the basis of three-dimensional finite-difference time-domain method, the mode and unidirectional-emission characteristics for a 5 μm-radius microcavity laser with radial waveguide are studied. Q factors and mode field patterns for high-Q transverse electric mode near the wavelength of 1550 nm are obtained. An AlGaInAs/InP circular microcavity laser with radius of 5 μm is fabricated by semiconductor planar processing technology, with a 1 μm wide output waveguide directly connected to the cavity. Continuous single mode lasing is achieved with a threshold current of 4 mA at the temperature of 298 K. The side mode suppression ratio of the laser is 33.4 dB when the injection current is 9 mA. On the basis of rate equation, the laser model intensity is fitted with the change of the injection current, and the spontaneous emission factor of the laser is about 5.5×10-3.

广告组5 - 光束分析仪
补充资料

中图分类号:TN248.4

DOI:10.3788/CJL201744.0901010

所属栏目:激光器件与激光物理

收稿日期:2017-04-17

修改稿日期:2017-05-16

网络出版日期:--

作者单位    点击查看

吕晓萌:中国电子科技集团公司第二十九研究所, 四川 成都 610036
黄永箴:中国科学院半导体研究所, 北京 100083
邹灵秀:中国科学院半导体研究所, 北京 100083
杨跃德:中国科学院半导体研究所, 北京 100083
肖金龙:中国科学院半导体研究所, 北京 100083

联系人作者:吕晓萌(lvxiaomeng@semi.ac.cn)

备注:吕晓萌(1986-), 男, 博士, 主要从事微腔激光器及微纳光子学方面的研究。

【1】Roelkens G, Liu L, Liang D, et al. III-V/silicon photonics for on-chip and inter-chip optical interconnects[J]. Laser & Photonics Reviews, 2010, 4(6): 751-779.

【2】Zhou Xuyan, Zhao Shaoyu, Ma Xiaolong, et al. Low vertical devergence angle and high brightness photonic crystal semiconductor laser[J]. Chinese J Lasers, 2017, 44(2): 0201010.
周旭彦, 赵少宇, 马晓龙, 等. 低垂直发散角高亮度光子晶体半导体激光器[J]. 中国激光, 2017, 44(2): 0201010.

【3】Zhang Limeng, Lu Dan, Yu Liqiang, et al. InP-based few lateral-modes semiconductor laser[J]. Acta Optica Sinica, 2015, 35(s2): s206001.
张莉萌, 陆 丹, 余力强, 等. InP基少模半导体激光器[J]. 光学学报, 2015, 35(s2): s206001.

【4】Lu Ri, Xu Liuyang, Gao Xin, et al. Thermal characterization of electrically injected elliptical microcavity lasers[J]. Chinese J Lasers, 2016, 43(4): 0402007.
陆 日, 许留洋, 高 欣, 等. 电注入椭圆微腔半导体激光器热特性分析[J]. 中国激光, 2016, 43(4): 0402007.

【5】Papp S B, Beha K,Del′Haye P, et al. Microresonator frequency comb optical clock[J]. Optica, 2014, 1(1): 10-14.

【6】Mao M H, Chien H C. Transient behaviors of current-injection quantum-dot microdisk lasers[J]. Optics Express, 2012, 20(3): 3302-3310.

【7】Mechet P, Verstuyft S, de Vries T, et al. Unidirectional III-V microdisk lasers heterogeneously integrated on SOI[J]. Optics Express, 2013, 21(16): 19339-19352.

【8】Choi S J, Djordjev K, Choi S J, et al. Microdisk lasers vertically coupled to output waveguides[J]. IEEE Photonics Technology Letters, 2003, 15(10): 1330-1332.

【9】van Campenhout J, Rojo-Romeo P, Regreny P, et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit[J]. Optics Express, 2007, 15(11): 6744-6749.

【10】Zou L X, Liu B W, Lv X M, et al. Integrated semiconductor twin-microdisk laser under mutually optical injection[J]. Applied Physics Letters, 2015, 106(19): 191107.

【11】Lv X M, Huang Y Z, Yang Y D, et al. Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers[J]. Applied Physics Letters, 2014, 104(16): 161101.

【12】Yang Y D, Huang Y Z, Chen Q. High-Q TM whispering-gallery modes in three-dimensional microcylinders[J]. Physical Review A, 2007, 75(1): 013817.

【13】Lv X M, Zou L X, Huang Y Z, et al. Influence of mode Q factor and absorption loss on dynamical characteristics for semiconductor microcavity lasers by rate equation analysis[J]. IEEE Journal of Quantum Electronics, 2011, 47(12): 1519-1525.

【14】Yang Y D, Huang Y Z, Chen Q. Comparison of Q-factors between TE and TM modes in 3-D microsquares by FDTD simulation[J]. IEEE Photonics Technology Letters, 2007, 19(22): 1831-1833.

【15】Lv X M, Huang Y Z, Yang Y D, et al. Analysis of vertical radiation loss and far-field pattern for microcylinder lasers with an output waveguide[J]. Optics Express, 2013, 21(13): 16069-16074.

【16】Lv X M, Huang Y Z, Zou L X, et al. Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor[J]. Laser Photonics Reviews, 2013, 7(5): 818-829.

【17】Lv X M, Zou L X, Lin J D, et al. Unidirectional-emission single-mode AlGaInAs-InP microcylinder lasers[J]. IEEE Photonics Technology Letters, 2012, 24(11): 963-965.

【18】Zou L X, Lv X M, Huang Y Z, et al. Four-wavelength microdisk laser array laterally coupled with a bus waveguide[J]. Optics Letters, 2013, 38(19): 3807-3810.

【19】Zou L X, Huang Y Z, Lv X M, et al. Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing[J]. Photonics Research, 2014, 2(6): 177-181.

【20】Fujita M, Inoshita K, Baba T. Room temperature continuous wave lasing characteristics of GaInAsP/InP microdisk injection laser[J]. Electronics Letters, 1998, 34(3): 278-279.

引用该论文

Lü Xiaomeng,Huang Yongzhen,Zou Lingxiu,Yang Yuede,Xiao Jinlong. Unidirectional-Emission Circular Microcavity Laser with Radius of 5 μm[J]. Chinese Journal of Lasers, 2017, 44(9): 0901010

吕晓萌,黄永箴,邹灵秀,杨跃德,肖金龙. 半径5 μm的定向输出圆盘形微腔激光器[J]. 中国激光, 2017, 44(9): 0901010

被引情况

【1】柯超珍,许灿华,黄衍堂,马靖. 溶胶-凝胶法制备TiO2-SiO2混合微球腔的激发高阶回音壁模式. 中国激光, 2019, 46(2): 213002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF