首页 > 论文 > 光学学报 > 37卷 > 9期(pp:0914002--1)

基于DSP技术的外腔半导体激光器自动稳频系统

Automatic Frequency Stabilization System of External Cavity Diode Laser Based on Digital Signal Processing Technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

实现了一种基于数字信号处理(DSP)技术的外腔半导体激光器的自动稳频装置。该自动稳频装置以铷原子的饱和吸收谱线作为频率参考, 采用调制解调技术得到稳频所需的鉴频信号。激光自动稳频装置通过模数转换器以固定的速率不间断地采集饱和吸收信号和鉴频信号, 由DSP芯片对采集到的数字信号进行处理和分析。DSP 芯片利用通用输入输出端口控制调制信号的开关状态, 通过数模转换器控制激光频率扫描以及输出数字反馈。利用所述的激光稳频技术不仅实现了外腔半导体激光器自动稳频, 而且能够实时评估激光器的锁定情况, 在激光器失锁后及时重新锁定, 提高了激光器的长期运行能力。最后, 将使用自动稳频技术的激光器应用于空间冷原子钟原理样机地面实验中, 该稳频激光可以满足相关科学实验的需求。

Abstract

An automatic frequency stabilization system of external cavity diode laser based on digital signal processing (DSP) technology is achieved. The automatic frequency stabilization system uses saturated absorption spectroscopy of rubidium atom as the frequency reference and obtains error signal by modulation and demodulation technology. The system continuously collects saturated absorption signal and error signal by analog-to-digital converter at a fixed rate, the collected digital signal is treated and analyzed by DSP chip. The DSP chip controls the switch of modulation signal by its general purpose input output, and realizes the control of laser frequency scanning and digital feedback outputting by digital-to-analog converter. The laser frequency stabilization technology can not only stabilize the frequency of external cavity diode laser automatically, but also relock laser frequency in time after losing lock by evaluating the lock state of laser in real time, which improves the long-time running ability of the laser. Finally, the laser that uses the laser frequency stabilization technology is applied to a prototype of cold atomic clock in space, and it can meet the needs of relevant scientific experiments.

广告组5 - 光束分析仪
补充资料

中图分类号:TN248.4

DOI:10.3788/AOS201737.0914002

所属栏目:激光器与激光光学

基金项目:中国科技部仪器项目(2013YQ09094304)

收稿日期:2017-03-16

修改稿日期:2017-05-15

网络出版日期:--

作者单位    点击查看

项静峰:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800中国科学院大学, 北京 100049
王利国:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
李 琳:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
吕德胜:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
刘 亮:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800

联系人作者:项静峰(xiangjf@siom.ac.cn)

备注:项静峰(1989-), 男, 博士研究生, 主要从事冷原子物理和原子频标方面的研究。

【1】Talvitie H, Pietilainen A, Ludvigsen H, et al. Passive frequency and intensity stabilization of extended-cavity diode lasers[J]. Review of Scientific Instruments, 1997, 68(1): 1-7.

【2】Micalizio S, Godone A, Levi F, et al. Pulsed optically pumped 87Rb vapor cell frequency standard: a multilevel approach[J]. Physical Review A, 2009, 79(1): 013403.

【3】Affolderbach C, Droz F, Mileti G. Experimental demonstration of a compact and high-performance laser-pumped rubidium gas cell atomic frequency standard[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(2): 429-435.

【4】Zheng B C, Cheng H D, Meng Y L, et al. Development of an integrating sphere cold atom clock[J]. Chinese Physics Letters, 2013, 30(12): 123701.

【5】Tian Xiao, Xu Qinfang, Yin Mojuan, et al. Experiment study on optical lattice clock of strontium at NTSC[J]. Acta Optica Sinica, 2015, 35(s1): s102001.
田 晓, 徐琴芳, 尹默娟, 等. 国家授时中心锶原子光钟的实验研制进展[J]. 光学学报, 2015, 35(s1): s102001.

【6】Liu Peng, Cheng Huadong, Meng Yanling, et al. Research on phase modulation of Ramsey fringes in integrating sphere cold atom clocks[J]. Chinese J Lasers, 2016, 43(11): 1112001.
刘 鹏, 成华东, 孟艳玲, 等. 积分球冷原子钟相位调制Ramsey条纹研究[J]. 中国激光, 2016, 43(11): 1112001.

【7】Allard F, Maksimovic I, Abgrall M, et al. Automatic system to control the operation of an extended cavity diode laser[J]. Review of Scientific Instruments, 2004, 75(1): 54-58.

【8】Lévèque T, Faure B, Esnault F X, et al. PHARAO laser source flight model: design and performances[J]. Review of Scientific Instruments, 2015, 86(3): 033104.

【9】Dong L, Yin W B, Ma W G, et al. A novel control system for automatically locking a diode laser frequency to a selected gas absorption line[J]. Measurement Science & Technology, 2007, 18(5): 1447-1452.

【10】Zhang Yin, Wang Qing. Research of automatic frequency stability diode laser[J]. Chinese J Lasers, 2014, 41(6): 0602001.
张 胤, 王 青. 自动稳频半导体激光器研究[J]. 中国激光, 2014, 41(6): 0602001.

【11】Yu Zhijian, Xue Wenxiang, Zhao Wenyu, et al. Automatic frequency stabilization system of DFB diode laser for POP Rb atomic clock[J]. Journal of Time and Frequency, 2015, 38(3): 129-138.
鱼志健, 薛文祥, 赵文宇, 等. 用于POP铷原子钟的DFB激光器自动稳频技术研究[J]. 时间频率学报, 2015, 38(3): 129-138.

【12】Wei Fang, Chen Dijun, Dong Zuoren, et al. Full digital DFB diode laser system with frequency stabilization based on DSP[J]. Journal of Optelectronics·lasers, 2010, 21(s1): 40-42.
魏 芳, 陈迪俊, 董作人, 等. 基于DSP的全数字稳频DFB半导体激光器系统[J]. 光电子·激光, 2010, 21(s1): 40-42.

【13】He Zhigang, Deng Lunhua, Wang Guishi, et al. Nd∶YAG laser frequency stabilization technology based on digital feedback control[J]. Chinese J Lasers, 2012, 39(7): 0702009.
贺志刚, 邓伦华, 王贵师, 等. 基于数字反馈控制的Nd∶YAG激光器频率稳定技术[J]. 中国激光, 2012, 39(7): 0702009.

【14】Sun Yanguang, Dong Zuoren, Chen Dijun, et al. Laser methane remote sensing technology based on digital feedback frequency stabilization[J]. Chinese J Lasers, 2013, 40(4): 0408002.
孙延光, 董作人, 陈迪俊, 等. 基于数字反馈稳频的激光瓦斯遥测技术[J]. 中国激光, 2013, 40(4): 0408002.

【15】de Vegte J V. Fundamentals of digital signal processing[M]. Hou Zhengxin, Wang Guoan, Transl. Beijing: Publishing House of Electronics Industry, 2009: 80.
维格特. 数字信号处理基础[M]. 侯正信, 王国安, 译. 北京: 电子工业出版社, 2009: 80.

引用该论文

Xiang Jingfeng,Wang Liguo,Li Lin,Lü Desheng,Liu Liang. Automatic Frequency Stabilization System of External Cavity Diode Laser Based on Digital Signal Processing Technology[J]. Acta Optica Sinica, 2017, 37(9): 0914002

项静峰,王利国,李 琳,吕德胜,刘 亮. 基于DSP技术的外腔半导体激光器自动稳频系统[J]. 光学学报, 2017, 37(9): 0914002

被引情况

【1】夏媛,程学武,李发泉,李亚娟. 应用于窄带钠风温探测激光雷达的稳频和移频方法. 激光与光电子学进展, 2018, 55(10): 102801--1

【2】范杰,龚春阳,杨晶晶,邹永刚,马晓辉. 分布布拉格反射器半导体激光器的研究进展. 激光与光电子学进展, 2019, 56(6): 60003--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF