首页 > 论文 > 光学学报 > 37卷 > 9期(pp:923001--1)

宽波段纳米超材料太阳能吸收器的设计及其吸收特性

Design and Absorption Characteristics of Broadband Nano-Metamaterial Solar Absorber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在纳米偶极子等效电路的基础上, 结合多层波导与谐振腔结构, 设计了一种高吸收率、宽波段的纳米超材料太阳能吸收器。该吸收器的单元结构是由双六边形超材料纳米柱与Si圆环柱组成, 其中Si圆环中镶嵌了8个微型Au纳米圆柱。采用时域有限差分方法分析了纳米超材料吸收器在宽波段、不同偏振状态的入射光以及大角度入射光下的吸收特性。数值分析表明, 该吸收器的吸收波段主要集中在400~1500 nm, 其平均吸收率可以达到94%。不同偏振状态的入射光对吸收器的吸收率影响较小, 且在±60°大入射角度时该吸收器的平均吸收率仍可达到90%。该吸收器宽波段的高吸收率是由慢波效应与局域表面等离子体共振的共同作用引起的。

Abstract

Based on the equivalent circuit of nanodipole, combine the multi-layer waveguide and resonator structure, a nano-metamaterial solar absorber with high absorptivity and broadband is designed. The unit structure of the absorber is composed of a double hexagonal metamaterial nanocolumnar and a silicon ring, in which the silicon ring is fitted with eight miniature Au nanocolumns. The finite difference time domain method is used to analyze the absorption characteristics of the metamaterial solar absorber in broadband, different-polarized incident light and large-angle incident light. The numerical analysis shows that the absorption band of the absorber is mainly concentrated at 400-1500 nm, and the average absorption rate can reach 94%. The incident light of different polarization states has little effect on the absorptivity of the absorber and the average absorptivity of the absorber can reach 90% at a big incidence angle of ±60°. The high absorptivity of the broadband of the absorber is attributed to the synergetic effect of the slow-wave effect and localized surface plasmon resonance.

投稿润色
补充资料

中图分类号:O431

DOI:10.3788/aos201737.0923001

所属栏目:光学器件

基金项目:国家自然科学基金(31101081,61162015)、江西省自然科学基金(20161BAB202061)、江西省科技支撑项目(20151BBE50095)

收稿日期:2017-04-21

修改稿日期:2017-05-11

网络出版日期:--

作者单位    点击查看

朱 路:华东交通大学信息工程学院, 江西 南昌 330013
王 杨:华东交通大学信息工程学院, 江西 南昌 330013
熊 广:华东交通大学信息工程学院, 江西 南昌 330013
刘媛媛:华东交通大学信息工程学院, 江西 南昌 330013
岳朝政:华东交通大学信息工程学院, 江西 南昌 330013

联系人作者:朱路(luyuanwanwan@163.com)

备注:朱 路(1976-), 男, 博士, 副教授, 主要从事纳米天线、微波辐射成像等方面的研究。

【1】Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.

【2】Han Hao, Wu Dongwei, Liu Jianjun, et al. A terahertz metamaterial analog of electromagnetically induced transparency[J]. Acta Optica Sinica, 2014, 34(4): 0423003.
韩 昊, 武东伟, 刘建军, 等. 一种太赫兹类电磁诱导透明超材料谐振器[J]. 光学学报, 2014, 34(4): 0423003.

【3】Zhao Yang, He Jianfang, Yang Rongcao, et al. Two-dimenional surface plasmonic grating optical absorber with gradually varying structure[J]. Acta Optica Sinica, 2014, 34(2): 0223005.
赵 阳, 何建芳, 杨荣草, 等. 结构渐变的二维表面等离子体光栅光吸收器[J]. 光学学报, 2014, 34(2): 0223005.

【4】Liang Leixia, Xue Wenrui, Yang Ruicao. Optical absorber from surface plasmonic grating with depth-linear-gradient grooves[J]. Acta Optica Sinica, 2017, 37(1): 0123002.
梁磊霞, 薛文瑞, 杨荣草. 槽深线性渐变的表面等离子光栅光吸收器[J]. 光学学报, 2017, 37(1): 0123002.

【5】Ni Bo, Chen Xiaoshuang, Zhang Yang, et al. Impact of resonator rotational symmetry on infrared metamaterial absorber[J]. Journal of Infrared & Millimeter Waves, 2014, 33(4): 380-385.
倪 波, 陈效双, 张 杨, 等. 旋转对称性对红外超材料完美吸收器特性的影响[J]. 红外与毫米波学报, 2014, 33(4): 380-385.

【6】Smith D R, Pendry J B. Homogenization of metamaterials by field averaging[J]. Journal of the Optical Society of America B, 2006, 23(3): 391-403.

【7】Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

【8】Bingham C M, Tao H, Landy N I, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization[J]. Optics Express, 2008, 16(10): 7181-7188.

【9】Shen Xiaopeng, Cui Tiejun, Ye Jianxiang. Dual band metamaterial absorber in microwave regime[J]. Acta Physica Sinica, 2012, 61(5): 058101.
沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器[J]. 物理学报, 2012, 61(5): 058101.

【10】Ma Rongkun, Tang Yueming, Wang Jijun, et al. One-way absorber based on coupling of magnetic surface plasmonic resonances[J]. Chinese J Lasers, 2016, 43(1): 0117001.
马荣坤, 汤月明, 王纪俊, 等. 基于磁表面等离子体共振耦合的电磁波单向吸收器[J]. 中国激光, 2016, 43(1): 0117001.

【11】Shen X, Cui T J, Zhao J, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express, 2011, 19(10): 9401-9407.

【12】Li H, Yuan L H, Zhou B, et al. Ultrathin multiband gigahertz metamaterial absorbers[J]. Journal of Applied Physics, 2011, 110(1): 014909.

【13】Cui Y, Fung K H, Xu J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443-1447.

【14】Cao S, Yu W, Zhang L, et al. Broadband efficient light absorbing in the visible regime by a metananoring array[J]. Annalen Der Physik, 2014, 526(1-2): 112-117.

【15】Cao S, Yu W, Wang T, et al. Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption[J]. Applied Physics Letters, 2013, 102(16): 021104-2642.

【16】Xu Wan, Yan Changchun, Shi Junxian, et al. Great impacts of the dielectriclayer in a four-fan-rings-shaped metamaterial on the absorption of electromagnetic waves[J]. Acta Optica Sinica, 2015, 35(s1): s116003.
许 婉, 闫长春, 史俊贤, 等. 介质夹层对四扇环超常材料电磁吸收的影响研究[J]. 光学学报, 2015, 35(s1): s116003.

【17】Henry C H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells[J]. Journal of Applied Physics, 1980, 51(8): 4494-4500.

【18】Zhou J, Economon E N, Koschny T, et al. Unifying approach to left-handed material design[J]. Optics Letters, 2006, 31(24): 3620-3622.

【19】Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379.

【20】Palik E D. Handbook of optical constants of solids II[M]// Handbook of optical constants of solids. Boston: Academic Press, 1985, 33(1): 189.

【21】Nishi H, Asami K, Tatsuma T. CuS nanoplates for LSPR sensing in the second biological optical window[J]. Optical Materials Express, 2016, 6(4): 1043.

【22】Jin H, Wang K, Guo J, et al. Slow-wave effect of substrate integrated waveguide patterned with microstrip polyline[J]. IEEE Transactions on Microwave Theory & Techniques, 2016, 64(6): 1717-1726.

【23】Zhao Y, Zhang Y N, Wang Q, et al. Review on the optimization methods of slow light in photonic crystal waveguide[J]. IEEE Transactions on Nanotechnology, 2015, 14(3): 407-426.

【24】He S, Ding F, Mo L, et al. Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films[J]. Progress in Electromagnetics Research, 2014, 147: 69-79.

【25】Sterligov V A, Grytsaienko I A, Men Y. Scattering of surface plasmon-polaritons and volume waves by a rough gold film[J]. Optics Letters, 2016, 41(16): 3710-3713.

【26】Liu Z, Liu G, Fu G, et al. Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial[J]. Optics Express, 2016, 24(5): 5020-5025.

【27】Kim J D, Lee Y G. Graphene-based plasmonic tweezers[J]. Carbon, 2016, 103: 281-290.

【28】Zhang N, Zhou P, Wang S, et al. Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers[J]. Optics Communications, 2015, 338: 388-392.

【29】Vece M D, Kuang Y, Duren S N F V, et al. Plasmonic nano-antenna a-Si∶H solar cell[J]. Optics Express, 2012, 20(25): 27327-37336.

引用该论文

Zhu Lu,Wang Yang,Xiong Guang,Liu Yuanyuan,Yue Chaozheng. Design and Absorption Characteristics of Broadband Nano-Metamaterial Solar Absorber[J]. Acta Optica Sinica, 2017, 37(9): 0923001

朱 路,王 杨,熊 广,刘媛媛,岳朝政. 宽波段纳米超材料太阳能吸收器的设计及其吸收特性[J]. 光学学报, 2017, 37(9): 0923001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF