首页 > 论文 > 红外与激光工程 > 46卷 > 7期(pp:729001--1)

53 cm双筒望远镜高重频空间碎片激光测距系统

53 cm binocular telescope high repetition frequency space debris laser ranging system

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

空间碎片的存在对在轨运行航天器的安全构成严重的威胁, 同时空间碎片的不断产生对有限的轨道资源也将构成严重威胁。采用激光测距技术可实现空间碎片的实时高精度定轨, 从而可有效规避其对航天器的撞击。为了开展高精度小尺寸空间碎片激光测距, 研制了可快速平稳跟踪400 km以上空间目标的53 cm双筒望远镜, 然后结合低功率高重频亚纳秒激光器和单光子探测技术, 在该望远镜上研究和实现了空间碎片激光测距技术。结合激光测距方程, 分析研究系统的空间碎片探测能力, 当碎片距离为1 000 km时, 能探测到回波光子的碎片最小尺寸约为478.5 cm。实际观测表明: 该激光测距系统具有探测米级空间碎片(约1 000 km远)的能力。

Abstract

The existence of space debris has been causing great threats to the security of spacecraft in orbit. Space debris will occupy the limited and precious orbit capacities, so more and more debris generated in the space will also be a huge threat. The real-time high precision orbit determination of debris based on laser ranging technology can effectively avoid the collision between the debris and the spacecraft. In order to make high precision laser ranging to small size space debris, the 53 cm diameter binocular was developed here, which was capable of fast and steady tracking space targets of 400 km above the ground. Combined with low-power high-repetition-rate sub-nanosecond laser generator and single photon detecting technology, the space debris laser ranging technique was implemented on this binocular telescope. According to the laser ranging formulas, the detecting capability of this space debris laser ranging system was researched and analyzed. When the space debris was 1 000 km away from the ground station, the minimum size of the echo photon which can be detected is about 478.5 cm. This space debris laser ranging system has been putting into observation, and the practical observation results indicate this system has the capability to detect meter level debris in ca. 1 000 km distance.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:P171.3

DOI:10.3788/irla201746.0729001

所属栏目:空间碎片探测

基金项目:国家自然科学基金(U1431116); 国家自然科学基金青年科学基金(11403102); 中国科学院重大科研装备研制项目(ZDYZ2013-2)

收稿日期:2016-11-10

修改稿日期:2016-12-20

网络出版日期:--

作者单位    点击查看

李祝莲:中国科学院云南天文台, 云南 昆明 650216
张海涛:中国科学院云南天文台, 云南 昆明 650216
李语强:中国科学院云南天文台, 云南 昆明 650216
伏红林:中国科学院云南天文台, 云南 昆明 650216
翟东升:中国科学院云南天文台, 云南 昆明 650216

联系人作者:李祝莲(lzhl@ynao.ac.cn)

备注:李祝莲(1978-), 女, 研究员, 博士, 主要从事空间目标光电探测方面的研究。

【1】Du Heng, Liu Jing. Manned spaceflight and space debris[J]. Aerospace China, 2002(2): 18-23.
都亨, 刘静. 载人航天和空间碎片[J]. 中国航天, 2002(2):18-23.

【2】Liu Jing, Wang Ronglan, Zhang Hongbo, et al. Space debris collision prediction research[J]. Chinses Journal of Space Science, 2004, 24(6): 462-469. (in Chinese)
刘静, 王荣兰, 张宏博, 等. 空间碎片碰撞预警研究[J]. 空间科学学报, 2004, 24(6): 462-469.

【3】Li Yuqiang, Li Zhulian, Fu Honglin, et al. The experimentation of diffuse reflection laser ranging of space debris[J]. Chinese Journal of Lasers, 2011, 38(9): 154-158. (in Chinese)
李语强, 李祝莲, 伏红林,等. 空间碎片漫反射激光测距试验[J]. 中国激光, 2011, 38(9):154-158.

【4】Li Zhenwei, Zhang Tao, Sun Mingguo. Fast recognition and precise orientation of space objects in star background[J]. Optics and Precision Engineering, 2015, 23(2): 589-599. (in Chinese)
李振伟, 张涛, 孙明国. 星空背景下空间目标的快速识别与精密定位[J]. 光学 精密工程, 2015, 23(2): 589-599.

【5】Ye Shuhua, Huang Cheng. Astrogeodynamics[M]. Jinan: Shandong Science and Technology Publishing House, 2000: 91-118. (in Chinese)
叶叔华, 黄珹. 天文地球动力学[M]. 济南: 山东科学技术出版社, 2000: 91-118.

【6】Ji Rongyi, Zhao Changming, Ren Xuecheng. High precision and high frequency pulse laser ranging system[J]. Infrared and Laser Engineering, 2011, 40(8): 1461-1464. (in Chinese)
纪荣祎, 赵长明, 任学成. 高精度高重频脉冲激光测距系统[J]. 红外与激光工程, 2011, 40(8): 1461-1464.

【7】Zhang Zhongping, Zhang Haifeng, Wu Zhibo, et al. Experiment of laser ranging to space debris based on high power solid-state laser system at 200 HZ repetition rate[J]. Chinses Journal of Lasers, 2014, 41(s1): 108005. (in Chinese)
张忠萍, 张海峰, 吴志波, 等. 基于200 Hz重复率高功率全固态激光器空间碎片激光测距试验[J]. 中国激光, 2014, 41(s1): 108005.

【8】Dai W, Song Y, Xu B, et al. High-power sub-picosecond all-fiber laser source at 1.56 μm[J]. Chinese Optics Letters, 2014, 12(11): 53-55.

【9】Li Yuqiang, Li Rongwang, Li Zhulian, et al. Application research on space debris laser ranging[J]. Infrared and Laser Engineering, 2015, 44(11): 3324-3329. (in Chinese)
李语强, 李荣旺, 李祝莲,等. 空间碎片激光测距应用研究[J]. 红外与激光工程, 2015, 44(11): 3324-3329.

【10】Kirchner G, Koidl F, Friederich F, et al. Laser measurements to space debris from Graz SLR station[J]. Advances in Space Research, 2013, 51(1): 21-24.

【11】Li Bin, Sang Jizhang, Ning Jinsheng. Analysis of accuracy in orbit predictions for space debris using semianalytic theory[J]. Infrared and Laser Engineering, 2015, 44(11): 3310-3316. (in Chinese)
李彬, 桑吉章, 宁津生. 空间碎片半解析法轨道预报精度性能分析[J]. 红外与激光工程, 2015, 44(11): 3310-3316.

【12】Wang Huai, Dai Shuang, Zhang Jingxu. Azimuth shafting bearing structure in a large Alt-azimuth telescope[J]. Optics and Precision Engineering, 2012, 20(7): 1509-1516. (in Chinese)
王槐, 代霜, 张景旭. 大型地平式望远镜的方位轴系支撑结构[J]. 光学 精密工程, 2012, 20(7): 1509-1516.

【13】Huang Tao, Li Zhulian, Zhang Haitao, et al. Design and implementation for control system of 53 cm binocular laser ranging telescope[J]. Modern Electronics Technique, 2014, 37(16): 1-7. (in Chinese)
黄涛, 李祝莲, 张海涛,等. 53 cm双筒激光测距望远镜控制系统的设计与实现[J]. 现代电子技术, 2014, 37(16): 1-7.

【14】John J Degnan. Theoretical performance of NASA′s SGSLR system ranging to GNSS Satellites[C]// Sigma Space Corporation ILRS Technical Workshop, 2015: 26-30.

【15】Zhou P, Liu Z, Xu X, et al. Influence of turbulent atmosphere on the far-field coherent combined beam quality[J]. Chinese Optics Letters, 2008, 6(9): 625-627.

引用该论文

Li Zhulian,Zhang Haitao,Li Yuqiang,Fu Honglin,Zhai Dongsheng. 53 cm binocular telescope high repetition frequency space debris laser ranging system[J]. Infrared and Laser Engineering, 2017, 46(7): 0729001

李祝莲,张海涛,李语强,伏红林,翟东升. 53 cm双筒望远镜高重频空间碎片激光测距系统[J]. 红外与激光工程, 2017, 46(7): 0729001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF