首页 > 论文 > Photonics Research > 5卷 > 6期(pp:536--1)

Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

In this paper, we have shown that perfect absorption at terahertz frequencies can be achieved by using a composite structure where graphene is coated on one-dimensional photonic crystal (1DPC) separated by a dielectric. Due to the excitation of optical Tamm states (OTSs) at the interface between the graphene and 1DPC, a strong absorption phenomenon occurs induced by the coupling of the incident light and OTSs. Although the perfect absorption produced by a metal–distributed Bragg reflector structure has been researched extensively, it is generally at a fixed frequency and not tunable. Here, we show that the perfect absorption at terahertz frequency not only can be tuned to different frequencies but also exhibits a high absorption over a wide angle range. In addition, the absorption of the proposed structure is insensitive to the polarization, and multichannel absorption can be realized by controlling the thickness of the top layer.

投稿润色
补充资料

DOI:10.1364/prj.5.000536

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (51806001, 61490713, 61505111); Natural Science Foundation of Guangdong Province10.13039/501100003453 (2015A030313549); China Postdoctoral Science Foundation10.13039/501100002858 (2016M602509); Science and Technology Planning Project of Guangdong Province (2016B050501005); Science and Technology Project of Shenzhen (JCYJ20150324141711667); Natural Science Foundation of SZU (827-000051, 827-000052, 827-000059).

收稿日期:2017-06-28

录用日期:2017-08-26

网络出版日期:2017-09-11

作者单位    点击查看

Xi Wang:SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Xing Jiang:SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Qi You:SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Jun Guo:SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Xiaoyu Dai:SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Yuanjiang Xiang:SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

联系人作者:Yuanjiang Xiang(xiangyuanjiang@126.com)

【1】J. Federici, and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107 , 111101 (2010).

【2】P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5 , 124–166 (2011).

【3】M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1 , 97–105 (2007).

【4】S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108 , 047401 (2012).

【5】Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4 , 5483 (2014).

【6】M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79 , 033101 (2009).

【7】H. Wu, F. Shi, and Y. Chen, “Broadband terahertz absorption enabled by coating an ultrathin antireflection film on doped semiconductor,” Opt. Express 24 , 20663–20671 (2016).

【8】J. Zhou, K. Bhattarai, S. Silva, J. Jeon, and J. Kim, “A THz plasmonics perfect absorber and Fabry–Perot cavity mechanism (Conference Presentation),” Proc. SPIE 9956 , 99560H (2016).

【9】N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79 , 125104 (2009).

【10】T. V. Teperik, F. J. G. de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2 , 299–301 (2008).

【11】B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagn. Res. 101 , 231–239 (2010).

【12】A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72 , 233102 (2005).

【13】M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76 , 165415 (2007).

【14】S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B 79 , 085416 (2009).

【15】X. F. Chen, S. J. Li, and Y. Zhang, “The wide-angle perfect absorption based on the optical Tamm states,” Optoelectron. Lett. 10 , 317–320 (2014).

【16】S. Lu, X. Chao, X. Chen, and B. Tang, “TE polarization perfect absorption with dual-band in metal-photonic crystal-metal structure,” Acta Opt. Sin. 35 , 289–294 (2015).

【17】M. S. Fang, F. H. Shi, and Y. H. Chen, “Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide,” Plasmonics 11 , 197–203 (2015).

【18】A. K. Geim, and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6 , 183–191 (2007).

【19】K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490 , 192–200 (2012).

【20】F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4 , 611–622 (2010).

【21】G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5 , 1353–1368 (2013).

【22】P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6 , 259–264 (2012).

【23】M. Grande, M. A. Vincenti, T. Stomeo, G. V. Bianco, D. de Ceglia, N. Ak?zbek, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings,” Opt. Express 22 , 31511–31519 (2014).

【24】J. Guo, Y. Sun, Y. Zhang, H. Li, H. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78 , 026607 (2008).

【25】M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92 , 251112 (2008).

【26】M. Tamagnone, J. S. Gomez-Diaz, and J. R. Mosig, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys. 112 , 114915 (2012).

【27】B. Auguié, A. Bruchhausen, and A. Fainstein, “Critical coupling to Tamm plasmons,” J. Opt. 17 , 035003 (2015).

【28】K. Bliokh, Y. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Unusual resonators: plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80 , 1201–1213 (2008).

【29】T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Phys. 25 , 215301 (2013).

【30】N. Nagai, and R. Fukasawa, “Abnormal dispersion of polymer films in the THz frequency region,” Chem. Phys. Lett. 388 , 479–482 (2004).

【31】M. Naftaly, and R. E. Miles, “Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351 , 3341–3346 (2005).

【32】C. M. Randall, and R. D. Rawcliffe, “Refractive indices of germanium, silicon, and fused quartz in the far infrared,” Appl. Opt. 6 , 1889–1895 (1967).

【33】X. L. Cheng, X. Chen, and Z. Y. Zhu, “THz-TDS spectra study of polymer materials with different polarity,” J. Infrared Millimeter Waves 32 , 150–153 (2013).

引用该论文

Xi Wang, Xing Jiang, Qi You, Jun Guo, Xiaoyu Dai, and Yuanjiang Xiang, "Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene," Photonics Research 5(6), 000536 (2017)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF