首页 > 论文 > Optoelectronics Letters > 12卷 > 6期(pp:469-472)

Research on measurement-device-independent quantum key distribution based on an air-water channel

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

A measurement-device-independent quantum key distribution (MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel’s asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.

投稿润色
补充资料

DOI:10.1007/s11801-016-6198-8

基金项目:This work has been supported by the National Natural Science Foundation of China (No.61302099).

收稿日期:2016-09-12

修改稿日期:--

网络出版日期:--

作者单位    点击查看

ZHOU Yuan-yuan:Electronic Engineering College, Naval University of Engineering, Wuhan 430033, China
ZHOU Xue-jun:Electronic Engineering College, Naval University of Engineering, Wuhan 430033, China
XU Hua-bin:Electronic Engineering College, Naval University of Engineering, Wuhan 430033, China
CHENG Kang:Electronic Engineering College, Naval University of Engineering, Wuhan 430033, China

联系人作者:ZHOU Yuan-yuan(zyy_hjgc@aliyun.com)

【1】C. H. Bennett and G. Brassard, Quantum Cryptography: Public Key Distribution and Coin Tossing, in Proceedings of IEEE International Conference on Computers, Syetems and Signal Processing 175, 1984.

【2】W Y Hwang, Phys. Rev. Lett. 91, 057901 (2003).

【3】Y. Y. Zhou, X. J. Zhou, P. G. Tian and Y. J. Wang, Chin. Phys. B 22, 010305 (2013).

【4】F H Xu, Phys. Rev. A 92, 012333 (2015).

【5】Y. Y. Zhou and X. J. Zhou, Optoelectron. Lett. 11, 0149 (2015).

【6】R Rahaman, M G Parker, P Mironowicz and M Pawlowski, Phys. Rev. A. 92, 062304 (2015).

【7】E A Aguilar, R Ramanathan, J Kofler and M Pawlowski, Phys. Rev. A 94, 022305 (2016).

【8】Y H Zhou, Z W Yu and X B Wang, Phys. Rev. A 93, 042324 (2016).

【9】M Schiavon, G Vallone, F Ticozzi and P Villoresi, Phys. Rev. A 93, 012331 (2016).

【10】H. K. Lo, M. Curty and B. Qi, Phys. Rev. Lett. 108, 130503 (2012).

【11】X F Ma, C-H F Fung and M Razavi, Phys. Rev. A 86, 052305 (2012).

【12】Z Y Tang, K J Wei, O Bedroya, L Qian and H L Lo, Phys. Rev. A 93, 042308 (2016).

【13】Y. Y. Zhou, X. J. Zhou and B B Su, Optoelectron. Lett. 12, 0149 (2016).

【14】D Chen, S H Zhao, L Shi and Y Liu, Phys. Rev. A 93, 032320 (2016).

【15】J ARON, New Scientist 212, 23 (2011).

【16】L MARCO, Underwater Communications, Morgan: Claypool Publishers, 82 (2012).

【17】F Zhou, H L Yong, D D Li, J Yin, J G Ren and C Z Peng, Acta Phys. Sin. 63, 140303 (2014). (in Chinese)

【18】C Dong, S H Zhao, W H Zhao, L Shi and G H Zhao, Acta Phys. Sin. 63, 030302 (2014). (in Chinese)

【19】X F Ma and M Razavi, Phys. Rev. A 86, 062319 (2012).

【20】S H Sun, M Gao, C Y Li and L M Liang, Phys. Rev. A 87, 052329 (2013).

引用该论文

ZHOU Yuan-yuan,ZHOU Xue-jun,XU Hua-bin,CHENG Kang. Research on measurement-device-independent quantum key distribution based on an air-water channel[J]. 光电子快报(英文版), 2016, 12(6): 469-472

ZHOU Yuan-yuan,ZHOU Xue-jun,XU Hua-bin,CHENG Kang. Research on measurement-device-independent quantum key distribution based on an air-water channel[J]. Optoelectronics Letters, 2016, 12(6): 469-472

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF