首页 > 论文 > 中国激光 > 44卷 > 10期(pp:1010001--1)

弛豫振荡对3×3耦合器数字解调的影响

Effect of Relaxation Oscillation on Digital Demodulation of 3×3 Couplers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光器的弛豫振荡带来的强度噪声对分布反馈式光纤激光水听器的系统噪声有较大影响。分析了该强度噪声在NPS算法数字实现中的传递过程, 发现求导运算的非理想特性是解调结果中引入强度噪声的原因。提出了一种改进的NPS算法, 使强度噪声在进入求导运算前被抵消, 消除了强度噪声传递到解调结果中的途径。实验结果表明, 当弛豫振荡峰处相对强度噪声为-84 dB·Hz-1时对解调相位噪声的抑制在1 kHz处达到了30 dB。将改进后算法与不需要求导运算的反正切法进行了对比, 进一步验证了其可抑制求导所引入的强度噪声。

Abstract

The intensity noise caused by the relaxation oscillation in lasers has a great influence on the system noise in the distributed feedback fiber laser hydrophone. The transmission process of the intensity noise in the digital realization of the NPS (Naval Postgraduate School) algorithm is analyzed, and it is found that the non-ideal characteristic of the derivation operation is the reason for the introduction of intensity noises in the demodulation results. An improved symmetric demodulation algorithm is proposed, where the intensity noise is canceled before entering the derivation operation and the way of the intensity noise transferring to the demodulation results is eliminated. The experimental results show that the demodulated phase noise suppression at 1 kHz reaches 30 dB when the relative intensity noise at the relaxation oscillation peak is -84 dB·Hz-1. The improved algorithm is compared with the arctangent method where the derivative operation is not needed and is further verified to suppress the intensity noise introduced by the derivation.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN253

DOI:10.3788/cjl201744.1010001

所属栏目:遥感与传感器

收稿日期:2017-04-14

修改稿日期:2017-06-06

网络出版日期:--

作者单位    点击查看

毛 欣:海军工程大学兵器工程系, 湖北 武汉 430000
黄俊斌:海军工程大学兵器工程系, 湖北 武汉 430000
顾宏灿:海军工程大学兵器工程系, 湖北 武汉 430000

联系人作者:毛欣(1603422658@qq.com)

备注:毛 欣(1988-), 女, 博士研究生, 主要从事光纤光栅传感方面的研究。

【1】Foster S, Tikhomirov A, Harrison J, et al. Demonstration of an advanced fiber laser hydrophone array in Gulf St Vincent[C]. SPIE, 2015, 9634: 96342F.

【2】Fang G S, Xu T W, Li F. 16-channel fiber laser sensing system based on phase generated carrier algorithm[J]. IEEE Photon Tech Lett, 2013, 25(22): 2185-2188.

【3】Léguillon Y, Tow K H, Besnard P, et al. First demonstration of a 12 DFB fiber laser array on a 100 GHz ITU grid, for underwater acoustic sensing application[C]. SPIE, 2012, 8439: 84390J.

【4】Li R Z, Wang X B, Huang J B, et al. Spatial-division-multiplexing addressed fiber laser hydrophone array[J]. Opt Lett, 2013, 38(11): 1909-1911.

【5】Rajesh R, Sreehari C V, Vivek K, et al. An eight element hydrophone array using DFB fiber laser with bender bar packaging[C]. OSA Technical Digest, 2016: Th3A.52.

【6】Tang Bo, Huang Junbin, Gu Hongcan. Distributed feedback fiber laser hydrophone used in towed line array[J]. Chinese J Lasers, 2016, 43(8): 0810002.
唐波, 黄俊斌, 顾宏灿. 应用于舷侧阵的分布反馈式光纤激激光水听器研究[J]. 中国激光, 2016, 43(8): 0810002.

【7】Tikhomirov A, Foster S. DFB FL sensor multiplexing noise[C]. Australian Conference on Optical Fiber Technology, 2006: 60-62.

【8】Liu X H, Chang J, Zhang S S, et al. External optical feedback effects on stability of asymmetric DFB-FL and isolation method[J]. J Mod Optic, 2014, 61(12): 973-979.

【9】Liu Wen. Research on the key issues in distributed-feedback fiber laser array[D]. Changsha: National University of Defense Technology, 2016.
刘文. 分布反馈光纤激光器阵列关键技术研究[D]. 长沙: 国防科技大学, 2016.

【10】Ma L N, Hu Y M, Xiong S D, et al. Intensity noise and relaxation oscillation of a fiber laser sensor array integrated in a single fiber[J]. Opt Lett, 2010, 35(11): 1795-1797.

【11】Xu T W, LI F, Wu Y F. Stability of distributed feedback fiber laser sensor array with unequal wavelength spacing[C]. SPIE, 2009, 7382: 73823P.

【12】Todd M. On the probability structure of output noise from a digital phase demodulation system subject to biased intensity-based input noise[J]. J Lightwave Technol, 2008, 26(14): 2291-2300.

【13】Todd M. Noise propagation in an optical demodulation scheme used for fiber Bragg grating interrogation[C]. SPIE, 2011, 7982: 79820A.

【14】Liang Xun, Xiong Shuidong, Hu Yongming. Impact of relative intensity noise on fiber optic hydrophone’s phase generated carrier scheme[J]. Chinese J Lasers, 2008, 35(5): 716-721.
梁迅, 熊水东, 胡永明. 激光器强度噪声对光纤水听器相位载波解调的影响[J]. 中国激光, 2008, 35(5): 716-721.

【15】Xu Dan, Lu Bin, Yang Fei, et al. Narrow linewidth single-frequency laser noise measurement based on a 3×3 fiber coupler[J]. Chinese J Lasers, 2016, 43(1): 0102004.
徐丹, 卢斌, 杨飞, 等. 基于3×3耦合器的窄线宽单频激光器噪声测量技术[J]. 中国激光, 2016, 43(1): 0102004.

【16】Zeng Zhoumo, Liu Fang, Feng Hao. Digitalized demodulation based on 3×3 coupler for dual Mach-Zehnder fiber interferometer[J]. Optics and Precision Engineering, 2014, 22(6): 1411-1417.
曾周末, 刘芳, 封皓. 基于3×3耦合器的双马赫-曾德尔干涉仪数字化相位解调[J]. 光学 精密工程, 2014, 22(6): 1411-1417.

【17】Liu Chang. Research and realize on demodulation system based on 3×3 coupler[D]. Harbin: Harbin Engineering University, 2012.
刘畅. 3×3耦合器解调方法研究与实现[J]. 哈尔滨: 哈尔滨工程大学, 2012.

【18】Wang Dan, Liao Yanbiao, Zhang Min. Analysis of precisions of parameters calculated by ellipse fitting in double beam interferometer[J]. Acta Optica Sinica, 2016, 36(3): 0312002.
王丹, 廖延彪, 张敏. 双光束干涉仪中椭圆拟合估算的参数精度研究[J]. 光学学报, 2016, 36(3): 0312002.

【19】Brown D A, Cameron C B, Keolian R M, et al. A symmetric coupler based demodulator for fiber optic interferometric sensors[C]. SPIE, 1991, 1584: 328-335.

【20】Todd M,Seaver M, Bucholtr E. Improved, operationally-passive interferometric demodulation method using 3×3 coupler[J]. Electron Lett, 2002, 38(15): 784-786.

引用该论文

Mao Xin,Huang Junbin,Gu Hongcan. Effect of Relaxation Oscillation on Digital Demodulation of 3×3 Couplers[J]. Chinese Journal of Lasers, 2017, 44(10): 1010001

毛 欣,黄俊斌,顾宏灿. 弛豫振荡对3×3耦合器数字解调的影响[J]. 中国激光, 2017, 44(10): 1010001

被引情况

【1】郝歌扬,吴国俊,刘博,吕沛,王皓. 泵浦激光器驰豫振荡噪声对光纤激光水听器的影响. 光子学报, 2018, 47(8): 806001--1

【2】 徐倩楠, 周次明, 范典, 庞彦东, 赵晨光, 陈希, 黄俊斌, 顾宏灿. 基于斐索干涉的超弱光纤光栅水听器阵列实验研究. 激光与光电子学进展, 2019, 56(15): 150602--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF