首页 > 论文 > 光学 精密工程 > 25卷 > 7期(pp:1771-1776)

扭转螺旋型力学微弯长周期光纤光栅的光谱特性

Spectral characteristics of helicoidal mechanically-induced long-period fiber grating

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用两个交替放置的周期性V型刻槽板对均匀扭转后的普通单模光纤径向施力制作螺旋型力学微弯长周期光纤光栅(H-MLPFG)。通过实验研究了周期压力和扭转率对该光栅传输谱特性的影响, 以及其偏振相关特性。结果表明, 施加在光纤的径向压力可以改变H-MLPFG的耦合强度, 但不影响其谐振波长变化, LP13耦合模耦合强度在波长1 54975 nm处为30.1 dB。当光纤扭转率由0增大到5.38 rad/cm, LP11、LP12和LP13模对应的扭转灵敏度分别为159、1.82和2.24 nm/(rad·cm-1)。光纤扭转率为0.90 rad/cm时, LP13包层模具有最大偏振相关损耗, 在波长1 550.45 nm处偏振相关损耗约为6.86 dB, 对应的谐振波长分离值为1.4 nm。该方法制作的LPFG模式耦合强度和谐振波长具有可调谐和可重构性的优点、且结构简单, 在光纤通信和传感领域具有潜在的应用价值。

Abstract

A helicoidal mechanically-induced long-period fiber grating(H-MLPFG)was formed by pressing a twisted fiber from two sides with two V-shaped identical periodically grooved plates. The influence of periodical pressure and twist rate on transmission spectrum of the H-MLPFG were investigated experimentally, together with the polarization characteristics. The results show that the depth of the coupling strength varies with the amount of pressure applied to the fiber, otherwise the resonant wavelength of the H-MLPFG is independent of it. The peak coupling strength of LP13 mode coupling is 30.1 dB at 1 549.75 nm. Twist sensitivities of the H-MLPFG is 1.59,1.82 and 2.24 nm/(rad·cm-1) for LP11, LP12 and LP13 mode couplings respectively when the twist rates increase from 0 to 5.38 rad/cm. The maximum PDL is approximately 6.86 dB at 1 550.45 nm for LP13 cladding mode and the corresponding resonant wavelength separation value is 1.4 nm. The H-MLPFG exhibits merits of tunable and reconstructable for coupling strength and resonant wavelength, simple and easy operation, thus has potential applications in fields of fiber-optic communications and fiber-optic sensing.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN253

DOI:10.3788/ope.20172507.1771

所属栏目:现代应用光学

基金项目:国家自然科学基金资助项目(No.61505017); 重庆市教委科学技术研究项目(No.KJ1709192; KJ1709211); 重庆市科委前沿与应用基础研究计划一般项目(No.cstc2014jcyjA0081; cstc2015jcyjA40035); 中国博士后基金资助项目(No.2016M592649);重庆理工大学青年科研项目星火支持计划(No.2015XH05)

收稿日期:2017-02-20

修改稿日期:2017-03-17

网络出版日期:--

作者单位    点击查看

石胜辉:重庆理工大学 电气与电子工程学院, 重庆 400054重庆理工大学 现代光电检测技术与仪器重点重庆市实验室, 重庆 400054
赵明富:重庆理工大学 电气与电子工程学院, 重庆 400054重庆理工大学 现代光电检测技术与仪器重点重庆市实验室, 重庆 400054
罗彬彬:重庆理工大学 电气与电子工程学院, 重庆 400054重庆理工大学 现代光电检测技术与仪器重点重庆市实验室, 重庆 400054
汤 斌:重庆理工大学 电气与电子工程学院, 重庆 400054重庆理工大学 现代光电检测技术与仪器重点重庆市实验室, 重庆 400054
陈立功:重庆理工大学 电气与电子工程学院, 重庆 400054

联系人作者:石胜辉(shshill@cqut.edu.cn)

备注:石胜辉(1980-), 男, 重庆人, 博士, 讲师, 2005年于长春理工大学获得学士学位, 2008年于昆明理工大学获得硕士学位, 2013年于电子科技大学获得博士学位, 主要从事光纤光栅传感方面的研究。

【1】ABRISHAMIAN F, MORISHITA K. Single-channel bandpass filters formed by a metal-doped fiber and long-period gratings [J]. IEEE Photonics Technology Letters, 2016, 28(8): 868-871.

【2】ZHANGA P, CHEN X W, GUAN Z G, et al.. Optimization of step-changed long-period gratings for gain-flattening of EDFAs [J]. IEEE Photonics Technology Letters, 2005, 17(1): 121-123.

【3】姜明顺, 冯德军, 隋青美. 机械感生长周期光纤光栅的可调谐环形光纤激光器[J]. 光学 精密工程, 2010, 18(2): 311-316.
JIANG M SH, FENG D J, SUI Q M. Tunable ring fiber laser using mechanical-induced long-period fiber grating [J]. Opt. Precision Eng., 2010, 18(2): 311-316. (in Chinese)

【4】DONGJ L, CHIANG K S. Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings [J]. IEEE Photonics Technology Letters, 2015, 27(9): 1006-1009.

【5】MARQUES L, HERNANDEZ F U, JAMES S W, et al.. Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles [J]. Biosensors and Bioelectronics, 2016, 75: 222-231.

【6】QUERO G, ZUPPOLINI S, CONSALES M, et al.. Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria [J]. Sensors and Actuators B: Chemical, 2016, 230: 510-520.

【7】WANG T, YASUKOCHI W, KORPOSH S, et al.. A long period grating optical fiber sensor with Nano-assembled porphyrin layers for detecting ammonia gas [J]. Sensors and Actuators B: Chemical, 2016, 228: 573-580.

【8】VENGSARKAR A M, LEMAIRE P J, JUDKINS J B, et al.. Long-period fiber gratings as band-rejection filters [J]. Journal of Lightwave Technology, 1996, 14(1): 58-65.

【9】KOPPV I, CHURIKOV V M, SINGER J, et al.. Chiral fiber gratings[J]. Science, 2004, 305(5680): 74-75.

【10】OH S, LEE K R, PAEK U C, et al.. Fabrication of helical long-period fiber gratings by use of a CO2 laser [J]. Optics Letters, 2004, 29(3): 1464-1466.

【11】JUNGH, SHIN W, KIM J K, et al.. Bending and strain sensitivities in a helicoidal long-period fiber gratings [J]. IEEE Photonics Technology Letters, 2009, 21(17): 1232-1234.

【12】IVANOVO V. Fabrication of long-period fiber gratings by twisting a standard single-mode fiber [J]. Optics Letters, 2005, 30(24): 3290-3292.

【13】SHIN W, LEE Y L, YU B A, et al.. Spectral characterization of helicoidal long-period fiber gratings in photonic crystal fibers [J]. Optics Communications, 2009, 282(17): 3456-3459.

【14】SHIN W, OH K, YU B A, et al.. All-fiber bandpass filter based on helicoidal long-period grating pair and null core hollow optical fiber with flexible transmission control [J]. IEEE Photonics Technology Letters, 2008, 20(2): 153-155.

【15】ZHANG L, LIU Y Q, ZHAO Y H, et al.. High sensitivity twist sensor based on helical long-period grating written in two-mode fiber[J]. IEEE Photonics Technology Letters, 2016, 28(15): 1629-1932.

【16】ZHOU X J, SHI S H, ZHANG Z Y, et al.. Refractive index sensing by using mechanically induced long-period grating [J]. IEEE Photonics Journal, 2012, 4(1): 119-125.

【17】石胜辉, 周晓军, 张旨遥, 等. 机械微弯长周期光纤光栅的制备及其光学特性研究[J]. 光电子·激光, 2011, 22(10): 1447-1450.
SHI SH H, ZHOU X J, ZHANG ZH Y, et al.. Experimental investigation on spectrum characteristics of mechanically-induced long-period gratings [J]. Journal of Optoelectronics·Laser, 2011, 22(10): 1447-1450. (in Chinese)

【18】CHO J Y, LEE K S. A birefringence compensation method for mechanically induced long-period fiber gratings [J]. Optics Communications, 2002, 213(4-6): 281-284.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF