首页 > 论文 > 光学学报 > 37卷 > 11期(pp:1115002--1)

基于稀疏编码直方图的稳健红外目标跟踪

Robust Infrared Target Tracking Based on Histograms of Sparse Coding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

充分利用红外图像信息建立有效的观测模型是实现稳健红外目标跟踪的基础。影响红外目标跟踪结果的因素除可见光目标跟踪也会面临的干扰因素之外,还有诸如边缘和纹理信息缺失、信噪比低和背景噪声影响等特有因素。提出基于稀疏编码直方图(HSC)特征和扰动感知模型(DAM)的红外目标跟踪方法,使用K-奇异值分解算法得到过完备字典,利用该字典计算得到每个像素点的稀疏编码,并组成HSC对目标进行表达,同时通过引入DAM增强算法抗背景干扰能力。该方法充分利用了红外图像中运动目标的结构特性,能够有效去除背景干扰。与其他跟踪器相比,在VOT-TIR2015数据集上,该方法的精确度和成功率指标分别获得3.8%和4.4%的提升,具有较高的研究价值和实用价值。

Abstract

Making use of information in infrared images to build an effective observation model is the basis for realizing robust infrared target tracking. Besides the regular factors that have adverse influence on visual target tracking, infrared target tracking is faced with other difficulties as well, such as lack of edge and texture information, low signal-to-noise ratio and background clutter. An infrared target tracking algorithm based on histograms of sparse coding (HSC) and the distractor-aware model (DAM) is proposed, which exploits K singular value decomposition algorithm to obtain an overcomplete dictionary. With the dictionary, sparse code of every pixel is computed to compose HSC as a descriptor, and DAM is utilized to strengthen resistance against background clutter. The proposed algorithm does not only use structural information of tracked object but also eliminates the influence of background clutter. Compared with other tracking algorithms, the proposed algorithm achieves 3.8% and 4.4% enhancement on VOT-TIR2015 dataset with respect to precision and success rate, respectively, possessing high research and practical value.

投稿润色
补充资料

中图分类号:TP391.4

DOI:10.3788/aos201737.1115002

所属栏目:机器视觉

基金项目:国家自然科学基金(61203076)、天津市自然科学基金(13JCQNJC03500)、河北省自然科学基金(F2017202009)

收稿日期:2017-03-27

修改稿日期:2017-05-10

网络出版日期:--

作者单位    点击查看

杨福才:河北工业大学控制科学与工程学院, 天津 300130
杨德东:河北工业大学控制科学与工程学院, 天津 300130
毛 宁:河北工业大学控制科学与工程学院, 天津 300130
李雪晴:河北工业大学控制科学与工程学院, 天津 300130

联系人作者:杨德东(ydd12677@163.com)

备注:杨福才(1990-),男,硕士研究生,主要从事机器学习、目标跟踪方面的研究。

【1】He Y J, Li M, Zhang J L, et al. Infrared target tracking via weighted correlation filter[J]. Infrared Physics & Technology, 2015, 73: 103-114.

【2】Huang Y, Zheng H, Yang H. Improving an object tracker for infrared flying bird tracking[C]. International Conference on Image Processing, 2016: 1699-1703.

【3】Demir S, Cetin E. Co-difference based object tracking algorithm for infrared videos[C]. International Conference on Image Processing, 2016: 434-438.

【4】Zhang Hui, Zhao Baojun, Tang Linbo, et al. Infrared object tracking based on adaptive multi-features integrations[J]. Acta Optica Sinica, 2010, 30(5): 1291-1296.
张辉, 赵保军, 唐林波, 等. 基于自适应多特征整合的红外目标跟踪[J]. 光学学报, 2010, 30(5): 1291-1296.

【5】Guan Zhiqiang, Chen Qian, Qian Weixian, et al. Infrared target tracking algorithm based on algorithm fusion[J]. Acta Optica Sinica, 2008, 28(5): 860-865.
管志强, 陈钱, 钱惟贤, 等. 一种基于算法融合的红外目标跟踪算法[J]. 光学学报, 2008, 28(5): 860-865.

【6】Sun Jin, Ding Yonghui, Zhou Lai. Visually interactive hand tracking algorithm combined with infrared depth tracking[J]. Acta Optica Sinica, 2017, 37(1): 0115002.
孙瑾, 丁永辉, 周来. 融合红外深度信息的视觉交互手部跟踪算法[J]. 光学学报, 2017, 37(1): 0115002.

【7】Zhao Aigang, Wang Hongli, Yang Xiaogang, et al. An affine invariant method of forward looking infra-red target recognition[J]. Laser & Optoelectronics Progress, 2015, 52(7): 071501.
赵爱罡, 王宏力, 杨小冈, 等. 一种仿射不变的前视红外目标识别方法[J]. 激光与光电子学进展, 2015, 52(7): 071501.

【8】Bao C L, Wu Y, Ling H B, et al. Real time robust l1 tracker using accelerated proximal gradient approach[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2012: 1830-1837.

【9】Danelljan M, Khan F S, Felsberg M, et al. Adaptive color attributes for real-time visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1090-1097.

【10】Zhang K H, Zhang L, Liu Q S, et al. Fast visual tracking via dense spatio-temporal context learning[C]. European Conference on Computer Vision, 2014: 127-141.

【11】Hare S, Golodetz S, Saffari A, et al. Struck: structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(10): 2096-2109.

【12】Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2009: 983-990.

【13】Zhu G, Porikli F, Li H. Beyond local search: tracking objects everywhere with instance-specific proposals[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 943-951.

【14】Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.

【15】Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2544-2550.

【16】Li Y, Zhu J K. A scale adaptive kernel correlation filter tracker with feature integration[C]. European Conference on Computer Vision, Workshop VOT2014, 2014: 254-265.

【17】Danelljan M, Hger G, Khan F S, et al. Accurate scale estimation for robust visual tracking[C]. British Machine Vision Conference, 2014.

【18】Danelljan M, Hger G, Khan F S, et al. Learning spatially regularized correlation filters for visual tracking[C]. IEEE International Conference on Computer Vision, 2015: 4310-4318.

【19】Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 886-893.

【20】Ren X F, Ramanan D. Histograms of sparse codes for object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2013: 3246-3253.

【21】Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.

【22】Bertinetto L, Valmadre J, Golodetz S, et al. Staple: complementary learners for real-time tracking[C]. International Conference on Computer Vision and Pattern Recognition, 2016: 1401-1409.

【23】Possegger H, Mauthner T, Bischof H. Indefense of color-based model-free tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015: 2113-2120.

【24】Alahari K, Berg A, Hager G, et al. The thermal infrared visual object tracking VOT-TIR2015 challenge results[C]. IEEE International Conference on Computer Vision Workshop, 2015: 639-651.

【25】Wu Y, Lim J, Yang M H. Online object tracking: a benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2411-2418.

【26】Gao J, Ling H B, Hu W M, et al. Transfer learning based visual tracking with Gaussian process regression[C]. European Conference on Computer Vision, 2014, 8691: 188-203.

【27】Zhang J M, Ma S G, Sclaroff S. MEEM: robust tracking via multiple experts using entropy minimization[C]. European Conference on Computer Vision, 2014, 8694: 188-203.

引用该论文

Yang Fucai,Yang Dedong,Mao Ning,Li Xueqing. Robust Infrared Target Tracking Based on Histograms of Sparse Coding[J]. Acta Optica Sinica, 2017, 37(11): 1115002

杨福才,杨德东,毛 宁,李雪晴. 基于稀疏编码直方图的稳健红外目标跟踪[J]. 光学学报, 2017, 37(11): 1115002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF