首页 > 论文 > 光学学报 > 37卷 > 11期(pp:1124001--1)

一种基于介质光栅金属薄膜复合结构的折射率传感器

A Refractive Index Sensor Based on Composite Structure of Dielectric Grating with Metal Films

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一种基于介质光栅金属薄膜复合结构的折射率传感器。利用He-Ne激光器输出的632.8 nm横磁偏振光激发复合结构中的表面等离子体,得到了高灵敏度的折射率传感器。运用有限元方法,数值模拟了具有不同光栅厚度、周期以及折射率的分析物的反射光谱。对占空比为0.5、金属薄膜厚度为45 nm的复合结构进行了参数优化,得到最优参数为:光栅厚度100 nm、光栅周期500 nm。在最优参数条件下,计算了金属薄膜与具有不同折射率的分析物之间的界面共振角的变化,得到了高达500 (°)/RIU的角灵敏度。该折射率传感器操作简单、成本低、角灵敏度高,具有很好的应用前景。

Abstract

A refractive index sensor with a composite structure based on dielectric grating with metal films is designed. The surface plasmas in the composite structure are excited by the transverse magnetic polarized light with a wavelength of 632.8 nm from a He-Ne laser and the refractive index sensor with a high sensitivity is obtained. With the finite element method, the reflection spectra for the analyte with different refractive indexes, grating thicknesses, and periods are numerically simulated. A grating thickness of 100 nm and a grating period of 500 nm are selected as the optimal parameters after the parameter optimization for the composite structure with a duty cycle of 0.5 and a metal film thickness of 45 nm. The variation of the resonance angle of the interface between the metal film and the analyte with different refractive indexes is calculated under the optimal parameters, and an angular sensitivity of 500 (°)/RIU is obtained. This refractive index sensor possesses the advantages of simple operation, low cost, and high angular sensitivity, which has considerable application prospects.

投稿润色
补充资料

中图分类号:O436.1

DOI:10.3788/aos201737.1124001

所属栏目:表面光学

基金项目:国家自然科学基金(61505074)、国家重点基础研究发展计划(2013CBA01703)、兰州理工大学红柳青年教师培养计划(Q201509)

收稿日期:2017-05-17

修改稿日期:2017-06-15

网络出版日期:--

作者单位    点击查看

张东阳:兰州理工大学理学院, 甘肃 兰州 730050
赵 磊:兰州城市学院电子与信息工程学院, 甘肃 兰州 730070
王向贤:兰州理工大学理学院, 甘肃 兰州 730050
王 茹:兰州理工大学理学院, 甘肃 兰州 730050
庞志远:兰州理工大学理学院, 甘肃 兰州 730050
杨 华:兰州理工大学理学院, 甘肃 兰州 730050
冯旺军:兰州理工大学理学院, 甘肃 兰州 730050

联系人作者:王向贤(wangxx869@126.com)

备注:张东阳(1990-),男,硕士研究生,主要从事微纳光学、表面增强拉曼散射方面的研究。

【1】Stewart M E, Anderton C R, Thompson L B, et al. Nanostructured plasmonic sensors[J]. Chemical Reviews, 2008, 108(2): 494-521.

【2】Wang X X, Zhang D G, Chen Y K, et al. Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography[J]. Applied Physics Letters, 2013, 102(3): 031103.

【3】Wang Ru, Wang Xiangxian, Yang Hua, et al. Theoretical investigation of adjustable period sub-wavelength grating inscribed by TE0 waveguide modes interference lithography[J]. Acta Physica Sinica, 2016, 65(9): 094206.
王茹, 王向贤, 杨华, 等. TE0导模干涉刻写周期可调亚波长光栅理论研究[J]. 物理学报, 2016, 65(9): 094206.

【4】Wang R, Wang X X, Yang H, et al. Theoretical investigation of hierarchical sub-wavelength photonic structures fabricated using high-order waveguide-mode interference lithograph[J]. Chinese Physics B, 2017, 26(2): 024202.

【5】Chen Y Z, Wang X X, Wang R, et al. Theoretical study of micro-optical structure fabrication based on sample rotation and two-laser-beam interference[J]. Chinese Physics B, 2017, 26(5): 054203.

【6】Brongersma M L, Kik P G. Surface plasmon nanophotonics[M]. Zhang Tong, Wang Qilong, Zhang Xiaoyang, et al, Transl. Nanjing: Southeast University Press, 2014: 130-137.
布隆格司马, 基克. 表面等离激元纳米光子学[M]. 张彤, 王琦龙, 张晓阳, 等, 译. 南京: 东南大学出版社, 2014: 130-137.

【7】Bartlett P N, Baumberg J J, Coyle S, et al. Optical properties of nanostructured metal films[J]. Faraday Discussions, 2004, 125: 117-132.

【8】Gates B D, Xu Q, Stewart M, et al. New approaches to nanofabrication: molding, printing, and other techniques[J]. Chemical Reviews, 2005, 105(4): 1171-1196.

【9】Tian C F, Deng Y H, Zhao D Y, et al. Plasmonic silver supercrystals with ultrasmall nanogaps for ultrasensitive SERS-based molecule detection[J]. Advanced Optical Materials, 2015, 3(3): 404-411.

【10】Abutoama M, Abdulhalim I. Angular and intensity modes self-referenced refractive index sensor based on thin dielectric grating combined with thin metal film[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 1-9.

【11】Teng C X, Jing N, Yu F D, et al. Refractive index sensor based on a multi-notched plastic optical fiber[J]. Applied Optics, 2017, 56(7): 1833-1838.

【12】Zhu S, Pang F F, Huang S J, et al. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD[J]. Optics Express, 2015, 23(11): 13880-13888.

【13】Qin L L, Zhang C, Li R F, et al. Silicon-gold core-shell nanowire array for an optically and electrically characterized refractive index sensor based on plasmonic resonance and Schottky junction[J]. Optics Letters, 2017, 42(7): 1225-1228.

【14】Shi Weihua, Wu Jing. Photonic crystal fiber sensor based on surface plasmonic and directional resonance coupling[J]. Acta Optica Sinica, 2015, 35(2): 0206002.
施伟华, 吴静. 基于表面等离子体共振和定向耦合的光子晶体光纤传感器[J]. 光学学报, 2015, 35(2): 0206002.

【15】El-Gohary S H, Choi J M, Kim N H, et al. Plasmonic metal-dielectric-metal stack structure with subwavelength metallic gratings for improving sensor sensitivity and signal quality[J]. Applied Optics, 2014, 53(10): 2152-2157.

【16】Hu C K, Liu D M. High-performance grating coupled surface plasmon resonance sensor based on Al-Au bimetallic layer[J]. Modern Applied Science, 2010, 4(6): 8-13.

【17】Cai D B, Lu Y H, Lin K Q, et al. Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM)[J]. Optics Express, 2008, 16(19): 14597-14602.

【18】Crick C R, Albella P, Ng B, et al. Precise attoliter temperature control of nanopore sensors using a nanoplasmonic bullseye[J]. Nano Letters, 2014, 15(1): 553-559.

【19】Zhang C, Ni H W, Chen R S, et al. Enzyme-free glucose sensing based on Fe3O4, nanorod arrays[J]. Microchimica Acta, 2015, 182(9): 1811-1818.

【20】Gupta G, Kondoh J. Tuning and sensitivity enhancement of surface plasmon resonance sensor[J]. Sensors and Actuators B: Chemical, 2007, 122(2): 381-388.

【21】Sun Xiaoliang, Chen Changhong, Meng Dejia, et al. Split modes of composite metal grating and its application for high performance gas sensor[J]. Acta Physica Sinica, 2015, 64(14): 147302.
孙小亮, 陈长虹, 孟德佳, 等. 复合金属光栅模式分离与高性能气体传感器应用[J]. 物理学报, 2015, 64(14): 147302.

【22】Dhibi A, Sassi I, Oumezzine M. Surface plasmon resonance sensor based on bimetallic alloys grating[J]. Indian Journal of Physics, 2016, 90(1): 125-130.

【23】Li R F, Wu D, Liu Y M, et al. Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating[J]. Nanoscale Research Letters, 2017, 12(1): 1-6.

【24】Moon S, Kim D. Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals[J]. JOSA A, 2006, 23(1): 199-207.

【25】Liao Y L, Zhao Y. Design of wire-grid polarizer with effective medium theory[J]. Optical and Quantum Electronics, 2014, 46(5): 641-647.

【26】Hale G M, Querry M R. Optical constants of water in the 200-nm to 200-microm wavelength region[J]. Applied Optics, 1973, 12(3): 555.

【27】Bk T. Silicon oxynitride: a material for GRIN optics[J]. Applied Optics, 1982, 21(6): 1069-1072.

【28】Philipp H R. Optical properties of silicon nitride[J]. Journal of the Electrochemical Society, 1973, 120(2): 295-300.

【29】Malitson I H. Interspecimen comparison of the refractive index of fused silica[J]. JOSA, 1965, 55: 1205-1208.

【30】Tan C Z. Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy[J]. Journal of Non-Crystalline Solids, 1998, 223(223): 158-163.

【31】Chen Nandian. Diffraction efficiency of sinusoidal grating and lamellar one with shallow groove[J]. Acta Optica Sinica, 1983, 3(1): 88-92.
陈南滇. 正弦形和矩形浅槽光栅的衍射效率[J]. 光学学报, 1983, 3(1): 88-92.

引用该论文

Zhang Dongyang,Zhao Lei,Wang Xiangxian,Wang Ru,Pang Zhiyuan,Yang Hua,Feng Wangjun. A Refractive Index Sensor Based on Composite Structure of Dielectric Grating with Metal Films[J]. Acta Optica Sinica, 2017, 37(11): 1124001

张东阳,赵 磊,王向贤,王 茹,庞志远,杨 华,冯旺军. 一种基于介质光栅金属薄膜复合结构的折射率传感器[J]. 光学学报, 2017, 37(11): 1124001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF