首页 > 论文 > 中国激光 > 44卷 > 11期(pp:1112001--1)

高压缩度压缩态光场制备中的模式匹配

Mode Matching in Preparation of Squeezed Field with High Compressibility

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了高压缩度压缩态光场制备中高斯光束的空间模式匹配问题。研究结果表明, 对于较小的目标腰斑, 注入光的腰斑位置和大小的允许偏移范围较小, 且模式匹配效率受腰斑位置偏离度的影响大, 而对于大腰斑, 情况则相反。此外, 激光光斑的椭圆率和像散、非线性晶体的热效应均会导致模式匹配效率下降。非对称结构的腔型可以扩大与光学参量腔匹配的激光束腰斑位置所允许的偏移范围, 更易实现高的模式匹配效率。

Abstract

The spatial mode-matching problem of Gaussian beams in the preparation of squeezed field with a high compressibility is studied. The study results show that, for a small target spot, the allowed deviation ranges of the waist position and size of the injected beam are small, and the mode-matching efficiency is more sensitive to the deviation of the waist position, while for a large target spot, the situation just reverses. In addition, the ellipticity and astigmatism of the laser spot and the thermal effect of the nonlinear crystal can lead to the decrease of the mode-matching efficiency. An asymmetric cavity can expand the allowed deviation range of the waist position which matches with optical parametric oscillators, which is easier to obtain a higher mode-matching efficiency.

广告组4 - 量子光学(超导单光子,符合计数器)
补充资料

中图分类号:TN241

DOI:10.3788/CJL201744.1112001

所属栏目:量子光学

基金项目:国家自然科学基金(11504220, 11654002, 61575114, 61574087)、国家重点基础研究计划(2016YFA0301401)、山西省基础研究计划(2015021022)、山西省“1331工程”重点学科建设计划

收稿日期:2017-05-03

修改稿日期:2017-07-22

网络出版日期:--

作者单位    点击查看

张文慧:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
杨文海:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
史少平:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
郑耀辉:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
王雅君:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006

联系人作者:王雅君(wangyajun_166@163.com)

备注:张文慧(1993-), 女, 硕士研究生, 主要从事光量子器件与全固态激光技术方面的研究。

【1】Polzik E S, Carri J, Kimble H J. Spectroscopy with squeezed light[J]. Physical review letters, 1992, 68(20): 3020-3023.

【2】Caves C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 1981, 23(8): 1693-1708.

【3】Wolfgramm F, Cere A, Beduini F A, et al. Squeezed-light optical magnetometry[J]. Physical Review Letters, 2010, 105(5): 053601.

【4】Peng Kunchi. Generation and application of squeezed state light sub-shot-noise-limit optical measurement and quantum information[J]. Physics, 2001, 30(5): 300-305.
彭堃墀. 光场压缩态的产生及其在亚散粒噪声光学测量和量子信息中的应用[J]. 物理, 2001, 30(5): 300-305.

【5】Eberle T, Steinlechner S, Bauchrowitz J, et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection[J]. Physical Review Letters, 2010, 104(25): 251102.

【6】Biao T, Zhang B C, Zhou L, et al. Sensitivity function analysis of gravitational wave detection with single-laser and large-momentum-transfer atomic sensors[J]. Research in Astronomy and Astrophysics, 2015, 15(3): 333-347.

【7】Vahlbruch H. Squeezed light for gravitational wave astronomy[D]. Hannover: Gottfried Wilhelm Leibniz Universitt , 2008.

【8】Wang Y J, Yang W H, Zheng Y H, et al. A compact Einstein-Podolsky-Rosen entangled light source[J]. Chinese Physics B, 2015, 24(7): 070303.

【9】Bowen W P, Schnabel R, Lam P K, et al. Experimental investigation of criteria for continuous variable entanglement[J]. Physical Review Letters, 2003, 90(4): 043601.

【10】Jia Xiaojun, Duan Zhiyuan, Yan Zhihui. Dependence of continuous variable entanglement enhancement on experimental parameters[J]. Acta Optica Sinica, 2013, 33(2): 0227001.
贾晓军, 段志园, 闫智辉. 连续变量纠缠增强对实验参量的依赖关系[J]. 光学学报, 2013, 33(2): 0227001.

【11】Yan Zhihui, Jia Xiaojun, Su Xiaolong, et al. Continuous variable multi-color entangled optical fields[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080007.
闫智辉, 贾晓军, 苏晓龙, 等. 连续变量多色纠缠态光场[J]. 激光与光电子学进展, 2013, 50(8): 080007.

【12】Su Xiaolong. Generation of quadripartite entangled optical field and quantum key distribution with continuous variables[D]. Taiyuan: Shanxi University, 2007: 81-106.
苏晓龙. 连续变量四组份纠缠光场产生和量子保密通信研究[D]. 太原: 山西大学, 2007: 81-106.

【13】Jia X J, Su X L, Pan Q, et al. Experimental demonstration of unconditional entanglement swapping for continuous variables[J]. Physical Review Letters, 2004, 93(25): 250503.

【14】Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575-579.

【15】Barenco A, Ekert A K. Dense coding based on quantum entanglement[J]. Journal of Modern Optics,2007, 42(6): 1253-1259.

【16】Du Pengyan, Bai Zengliang, Wang Xuyang, et al. Privacy amplification for quantum key distribution[J]. Acta Sinica Quantum Optica, 2013, 19(2): 129-133.
杜鹏燕, 白增亮, 王旭阳, 等. 量子密钥分发私密放大的实现[J]. 量子光学学报, 2013, 19(2): 129-133.

【17】Slusher R E, Hollberg L W, Yurke B, et al. Observation of squeezed states generated by four-wave mixing in an optical cavity[J]. Physical Review Letters, 1985, 55(22): 2409-2412.

【18】Vahlbruch H, Mehmet M, Chelkowski S, et al. Observation of squeezed light with 10-dB quantum-noise reduction[J]. Physical Review Letters, 2008, 100(3): 033602.

【19】Eberle T, Steinlechner S, Bauchrowitz J,et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection[J]. Physical Review Letters, 2010, 104(25): 251102.

【20】Vahlbruch H, Mehmet M, Danzmann K,et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 2016, 117(11): 110801.

【21】Peng K C, Pan Q, Wang H, et al. Generation of two-mode quadrature-phase squeezing and intensity-difference squeezing from a cw-NOPO[J]. Applied Physics B: Lasers and Optics, 1998, 66(6): 755-758.

【22】Wang Y, Shen H, Jin X L, et al. Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier[J]. Optics Express, 2010, 18(6): 6149-6155.

【23】Zhou Y Y, Jia X J, Li F, et al. Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal[J]. Optics Express, 2015, 23(4): 4952-4959.

【24】Li Huijuan, Zhang Miao, Li Fengqin. High-power single-frequency 461 nm generation from an intracavity doubling of Ti∶Sapphire laser with LBO[J]. Chinese J Lasers, 2016, 43(3): 0302003.
李慧娟, 张淼, 李凤琴. 高功率单频LBO腔内倍频461 nm钛宝石激光器[J]. 中国激光, 2016, 43(3): 0302003.

【25】Yang Wenhai, Wang Yajun, Li Zhixiu, et al. Compacted low-noise intracavity frequency-doubled single-frequency Nd∶YAP/KTP laser[J]. Chinese J Lasers, 2014, 41(5): 0502002.
杨文海, 王雅君, 李志秀, 等. 小型化、低噪声内腔倍频Nd∶YAP/KTP单频激光器[J]. 中国激光, 2014, 41(5): 0502002.

【26】Wang Yajun, Yang Wenhai, Zheng Yaohui, et al. Influence of pump wavelength and Nd3+ doped concentration on the performance of intracavity doubling single-frequency lasers[J]. Chinese J Lasers, 2013, 40(6): 0602004.
王雅君, 杨文海, 郑耀辉, 等. 抽运波长及Nd3+掺杂浓度对内腔倍频单频激光器性能的影响[J]. 中国激光, 2013, 40(6): 0602004.

【27】Li Zhixiu, Yang Wenhai, Wang Yajun, et al. Optimal design of single-frequency laser system for 795 nm squeezed light source[J]. Chinese J Lasers, 2015, 42(9): 0902002.
李志秀, 杨文海, 王雅君, 等. 用于795 nm压缩光源的单频激光系统的优化设计[J]. 中国激光, 2015, 42(9): 0902002.

【28】Boyd G D, Kleinman D A. Parametric interaction of focused Gaussian light beams[J]. Journal of Applied Physics, 1968, 39(8): 3597-3639.

【29】Jin X L, Su J, Zheng Y H, et al. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes[J]. Optics Express, 2015, 23(18): 23859-23866.

【30】Zhang Yan, Yu Xudong, Di Ke, et al. Locking the phase of balanced homodyne detection system for squeezed light[J]. Acta Physica Sinica, 2013, 62(8): 084204.
张岩, 于旭东, 邸克, 等. 压缩态光场平衡零拍探测的位相锁定[J]. 物理学报, 2013, 62(8): 084204.

【31】Chen Li, Sun Hengxin, Liu Hongyu, et al. The influence of phase fluctuations on temporal measurement with homodyne detection[J]. Acta Sinica Quantum Optica, 2013, 19(1): 6-11.
陈立, 孙恒信, 刘洪雨, 等. 基于平衡零拍时间测量的位相问题[J]. 量子光学学报, 2013, 19(1): 6-11.

【32】Jin Xiaoli, Su Jing, Zheng Yaohui. Influence of the non-ideal balanced homodyne detection on the measured squeezing degree[J]. Acta Optica Sinica, 2016, 36(10): 1027001.
靳晓丽, 苏静, 郑耀辉. 非理想平衡零拍探测系统对实测压缩度的影响[J]. 光学学报, 2016, 36(10): 1027001.

【33】Wang Y, Yang W, Li Z, et al. Determination of blue-light-induced infrared absorption based on mode-matching efficiency in an optical parametric oscillator[J]. Scientific Reports, 2017, 7: 41405.

【34】Yang W H, Wang Y J, Zheng Y H, et al. Comparative study of the frequency-doubling performance on ring and linear cavity at short wavelength region[J]. Optics Express, 2015, 23(15): 19624-19633.

【35】Li Z X, Ma W G, Yang W H, et al. Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation[J]. Optics Letters, 2016, 41(14): 3331-3334.

【36】Chen C Y, Li Z X, Jin X L, et al. Resonant photodetector for cavity-and phase-locking of squeezed state generation[J]. Review of Scientific Instruments, 2016, 87(10): 103114.

【37】Vahlbruch H, Chelkowski S, Hage B, et al. Coherent control of vacuum squeezing in the gravitational-wave detection band[J]. Physical Review Letters, 2006, 97(1): 011101.

【38】Li Hong, Feng Jinxia, Wan Zhenju, et al. Low noise continuous-wave single frequency 780 nm laser high-efficiently generated by extra-cavity-enhanced frequency doubling[J]. Chinese J Lasers, 2014, 41(5): 0502003.
李宏, 冯晋霞, 万振菊, 等. 高效率外腔倍频产生低噪声连续单频780 nm激光[J]. 中国激光, 2014, 41(5): 0502003.

【39】Li Jiahua, Zheng Haiyan, Zhang Ling, et al. 397.5 nm laser produced by resonant frequency-doubling with PPKTP crystal[J]. Acta Sinica Quantum Optica, 2011, 17(1): 30-33.
李嘉华, 郑海燕, 张玲, 等. 利用PPKTP晶体倍频产生397.5 nm激光的实验研究[J]. 量子光学学报, 2011, 17(1): 30-33.

【40】Han Y H, Wen X, Bai J D, et al. Generation of 130 mW of 397.5 nm tunable laser via ring-cavity-enhanced frequency doubling[J]. Journal of the Optical Society of America B , 2014, 31(8): 1942-1947.

【41】Zhang Jing, Ma Hongliang, Luo Yu, et al. Efficient external resonant frequency doubling green laser in bulk periodically poled KTiOPO4[J]. Chinese J Lasers, 2002, 29(12): 1057-1060.
张靖, 马红亮, 罗玉, 等. 准相位匹配的KTP晶体获得高效外腔谐振倍频绿光[J]. 中国激光, 2002, 29(12): 1057-1060.

【42】Chua S S Y, Slagmolen B J J, Shaddock D A, et al. Quantum squeezed light in gravitational-wave detectors[J]. Classical and Quantum Gravity, 2014, 31(18): 183001.

【43】Uehara N, Gustafson E K, Fejer M M, et al. Modeling of efficient mode-matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity[C]. SPIE, 1997, 2989: 57-68.

【44】Wang Y B, Zheng Y L, Shi Z Y, et al. High-power single-frequency Nd∶YVO4 green laser by self-compensation of astigmatisms[J]. Laser Physics Letters, 2012, 9(7): 506.

【45】Wang Y J, Li Z X, Zheng Y H, et al. Determination of the thermal lens of a PPKTP crystal based on thermally induced mode-mismatching[J]. IEEE Journal of Quantum Electronics, 2017, 53(1): 1-7.

引用该论文

Zhang Wenhui,Yang Wenhai,Shi Shaoping,Zheng Yaohui,Wang Yajun. Mode Matching in Preparation of Squeezed Field with High Compressibility[J]. Chinese Journal of Lasers, 2017, 44(11): 1112001

张文慧,杨文海,史少平,郑耀辉,王雅君. 高压缩度压缩态光场制备中的模式匹配[J]. 中国激光, 2017, 44(11): 1112001

被引情况

【1】陈超,吴德伟,杨春燕,李响,朱浩男. 利用连续变量纠缠信号提高罗兰C台间同步精度的方法. 激光与光电子学进展, 2019, 56(4): 42702--1

【2】史少平,杨文海,郑耀辉,王雅君. 压缩态光场制备中的单频激光源噪声分析. 中国激光, 2019, 46(7): 701009--1

【3】魏天丽,吴德伟,李响,朱浩男,王湘林. 压缩真空态通过分束器的纠缠特性研究. 激光与光电子学进展, 2019, 56(15): 152701--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF