Photonics Research, 2017, 5 (6): 06000598, Published Online: Dec. 7, 2017   

Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser Download: 559次

Author Affiliations
1 College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
2 Hunan Provincial Collaborative Innovation Center of High Power Fiber Laser, Changsha 410073, China
3 e-mail: jmxu1988@163.com
Abstract
Unlike a traditional fiber laser with a defined resonant cavity, a random fiber laser (RFL), whose operation is based on distributed feedback and gain via Rayleigh scattering (RS) and stimulated Raman scattering in a long passive fiber, has fundamental scientific challenges in pulsing operation for its remarkable cavity-free feature. For the time being, stable pulsed RFL utilizing a passive method has not been reported. Here, we propose and experimentally realize the passive spatiotemporal gain-modulation-induced stable pulsing operation of counterpumped RFL. Thanks to the good temporal stability of an employed pumping amplified spontaneous emission source and the superiority of this pulse generation scheme, a stable and regular pulse train can be obtained. Furthermore, the pump hysteresis and bistability phenomena with the generation of high-order Stokes light is presented, and the dynamics of pulsing operation is discussed after the theoretical investigation of the counterpumped RFL. This work extends our comprehension of temporal property of RFL and paves an effective novel avenue for the exploration of pulsed RFL with structural simplicity, low cost, and stable output.

Jiangming Xu, Jun Ye, Wei Liu, Jian Wu, Hanwei Zhang, Jinyong Leng, Pu Zhou. Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser[J]. Photonics Research, 2017, 5(6): 06000598.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!