首页 > 论文 > Photonics Research > 5卷 > 6期(pp:47--1)

Self-adjustment of a nonlinear lasing mode to a pumped area in a two-dimensional microcavity [Invited]

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We numerically performed wave dynamical simulations based on the Maxwell–Bloch (MB) model for a quadrupole-deformed microcavity laser with spatially selective pumping. We demonstrate the appearance of an asymmetric lasing mode whose spatial pattern violates both the x- and y-axes mirror symmetries of the cavity. Dynamical simulations revealed that a lasing mode consisting of a clockwise or counterclockwise rotating-wave component is a stable stationary solution of the MB model. From the results of a passive-cavity mode analysis, we interpret these asymmetric rotating-wave lasing modes by the locking of four nearly degenerate passive-cavity modes. For comparison, we carried out simulations for a uniform pumping case and found a different locking rule for the nearly degenerate modes. Our results demonstrate a nonlinear dynamical mechanism for the formation of a lasing mode that adjusts its pattern to a pumped area.

投稿润色
补充资料

DOI:10.1364/prj.5.000b47

基金项目:Waseda University10.13039/501100004423 Grant for Special Research Projects (2017B-197).

收稿日期:2017-06-14

录用日期:2017-10-21

网络出版日期:2017-10-31

作者单位    点击查看

Yuta Kawashima:Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
Susumu Shinohara:Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
Satoshi Sunada:Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
Takahisa Harayama:Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

联系人作者:Susumu Shinohara(sshinohara@runbox.com)

【1】J. U. N?ckel, and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385 , 45–47 (1997).

【2】H. G. L. Schwefel, H. E. Tureci, A. D. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities: Using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities , VahalaK., ed. (World Scientific, 2004), pp.?415–495.

【3】T. Harayama, and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5 , 247–271 (2011).

【4】H. Cao, and J. Wiersig, “Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87 , 61–111 (2015).

【5】X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, and Y.-F. Xiao, “Whispering-gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10 , 40–61 (2016).

【6】J. Wiersig, and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100 , 033901 (2008).

【7】J. Wiersig, J. Unterhinninghofen, Q. H. Song, H. Cao, M. Hentschel, and S. Shinohara, “Review on unidirectional light emission from ultralow-loss modes in deformed microdisks,” in Trends in Nano- and Micro-cavities , KwonO.LeeB.AnK., eds. (Bentham Books, 2011), pp.?109–152.

【8】N. L. Aung, L. Ge, O. Malik, H. E. Türeci, and C. F. Gmachl, “Threshold current reduction and directional emission of deformed microdisk lasers via spatially selective electrical pumping,” Appl. Phys. Lett. 107 , 151106 (2015).

【9】H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21 , 923–934 (2004).

【10】S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim, “Scarred resonances and steady probability distribution in a chaotic microcavity,” Phys. Rev. A 72 , 061801(R) (2005).

【11】S. Shinohara, T. Harayama, H. E. Türeci, and A. D. Stone, “Ray-wave correspondence in the nonlinear description of stadium-cavity lasers,” Phys. Rev. A 74 , 033820 (2006).

【12】V. A. Podolskiy, and E. E. Narimanov, “Chaos-assisted tunneling in dielectric microcavities,” Opt. Lett. 30 , 474–476 (2005).

【13】S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, and E. E. Narimanov, “Chaos-assisted directional light emission from microcavity lasers,” Phys. Rev. Lett. 104 , 163902 (2010).

【14】J. Yang, S.-B. Lee, S. Moon, S.-Y. Lee, S. W. Kim, T. T. A. Dao, J.-H. Lee, and K. An, “Pump-induced dynamical tunneling in a deformed microcavity laser,” Phys. Rev. Lett. 104 , 243601 (2010).

【15】T. Harayama, S. Sunada, and K. S. Ikeda, “Theory of two-dimensional microcavity lasers,” Phys. Rev. A 72 , 013803 (2005).

【16】R. Loudon, The Quantum Theory of Light (Oxford University, 2000).

【17】H. E. Türeci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74 , 043822 (2006).

【18】T. E. Tureci, H. G. L. Schwefel, A. D. Stone, and E. E. Narimanov, “Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities,” Opt. Express 10 , 752–776 (2002).

【19】J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A 5 , 53–60 (2003).

【20】M. Hentschel, H. Schomerus, and R. Schubert, “Husimi functions at dielectric interfaces: Inside–outside duality for optical systems and beyond,” Europhys. Lett. 62 , 636–642 (2003).

【21】T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida, “Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors,” Opt. Lett. 27 , 1430–1432 (2002).

【22】G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83 , 1710–1712 (2003).

【23】T. Fukushima, and T. Harayama, “Stadium and quasi-stadium laser diodes,” IEEE J. Sel. Top. Quantum Electron. 10 , 1039–1051 (2004).

【24】M. Choi, T. Tanaka, T. Fukushima, and T. Harayama, “Control of directional emission in quasistadium microcavity laser diodes with two electrodes,” Appl. Phys. Lett. 88 , 211110 (2006).

【25】S. F. Liew, L. Ge, B. Redding, G. S. Solomon, and H. Cao, “Pump-controlled modal interactions in microdisk lasers,” Phys. Rev. A 91 , 043828 (2015).

【26】L. I. Deych, “Effects of spatial nonuniformity on laser dynamics,” Phys. Rev. Lett. 95 , 043902 (2005).

【27】T.-Y. Kwon, S.-Y. Lee, M. S. Kurdoglyan, S. Rim, C.-M. Kim, and Y.-J. Park, “Lasing modes in a spiral-shaped dielectric microcavity,” Opt. Lett. 31 , 1250–1252 (2006).

【28】L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: Generalization and analytic results,” Phys. Rev. A 82 , 063824 (2010).

【29】L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser power-efficiency by control of spatial hole burning interactions,” Nat. Photonics 8 , 871–875 (2014).

【30】L. Ge, “Selective excitation of lasing modes by controlling modal interactions,” Opt. Express 23 , 30049–30056 (2015).

【31】T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, “Asymmetric stationary lasing patterns in 2D symmetric microcavities,” Phys. Rev. Lett. 91 , 073903 (2003).

【32】S. Sunada, T. Harayama, and K. S. Ikeda, “Nonlinear whispering-gallery modes in a microellipse cavity,” Opt. Lett. 29 , 718–720 (2004).

【33】S. Sunada, T. Harayama, and K. S. Ikeda, “Multimode lasing in two-dimensional fully chaotic cavity lasers,” Phys. Rev. E 71 , 046209 (2005).

【34】S. Shinohara, S. Sunada, T. Harayama, and K. S. Ikeda, “Mode expansion description of stadium-cavity laser dynamics,” Phys. Rev. E 71 , 036203 (2005).

引用该论文

Yuta Kawashima, Susumu Shinohara, Satoshi Sunada, and Takahisa Harayama, "Self-adjustment of a nonlinear lasing mode to a pumped area in a two-dimensional microcavity [Invited]," Photonics Research 5(6), B47 (2017)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF