首页 > 论文 > 激光与光电子学进展 > 54卷 > 12期(pp:120001--1)

相干脉冲堆积——超越啁啾脉冲放大的新技术

Coherent Pulse Stacking—An Innovation Beyond the Chirped Pulse Amplification

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

无论是在固体还是在光纤放大器中, 飞秒的脉冲能量都受到热效应和非线性效应的制约。即使是啁啾脉冲放大(CPA), 也难以超越高峰值功率和平均功率的限制。脉冲空间和时间分割放大-合成, 有可能打破僵局, 产生高重复频率和高脉冲能量; 而将高功率光纤放大器中的脉冲进行相干堆积, 有可能超越啁啾脉冲放大, 得到高于其若干数量级的脉冲能量, 同时保持高重复频率。

Abstract

Either in the solid state or in the fiber amplifier, femtosecond pulse energy is limited by the thermal and nonlinear effects. Chirped pulse amplification (CPA) solely cannot break the barrier of high peak power and average power. Coherent pulse combination, such as the spatially or temporally divided pulse amplification, has the potential to produce higher pulse energies at high repetition rate. Furthermore, coherent pulse stacking from high repetition rate, high power fiber amplifier may even surpass the chirped pulse amplification and produce many order higher pulse energy with high repetition frequency.

投稿润色
补充资料

中图分类号:O436

DOI:10.3788/lop54.120001

所属栏目:综述

基金项目:国家重大科学研究计划项目(2013CB922401)、国家自然科学基金(61575004,61735001)、科技部重大仪器研发项目(2012YQ14000505-0304)

收稿日期:2017-06-21

修改稿日期:2017-07-10

网络出版日期:--

作者单位    点击查看

张志刚:北京大学信息科学技术学院区域光纤通信网与新型光通信系统国家重点实验室, 北京 100871

联系人作者:张志刚(zhgzhang@pku.edu.cn)

备注:张志刚(1955—), 男, 博士, 教授, 主要从事超短脉冲固体和光纤激光器方面的研究。E-mail: zhgzhang@pku.edu.cn

【1】Fattahi H. Third-generation femtosecond technology[J]. Optica, 2014, 1(1): 45-63.

【2】Leemans W, Esarey E. Laser-driven plasma-wave electron accelerators[J]. Physics Today, 2009, 62(3): 44-49.

【3】Soulard R, Quinn M N, Tajima T, et al. ICAN: a novel laser architecture for space debris removal[J]. Acta Astronautica, 2014, 105(1): 192-200.

【4】Sansone G, Poletto L, Nisoli M. High-energy attosecond light sources[J]. Nature Photonics, 2011, 5: 655-663.

【5】Wu Y, Cunningham E, Zang H, et al. Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser[J]. Applied Physics Letters, 2013, 102(20): 201104.

【6】Fujioka S, Arikawa Y, Kojima S, et al. Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field[J]. Physics of Plasmas, 2016, 23(5): 056308.

【7】Breitkopf S, Eidam T, Klenke A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light Science & Applications, 2014, 3: e211.

【8】Leemans W P, Duarte R, Esarey E, et al. The Berkeley lab laser accelerator (BELLA): a 10 GeV laser plasma accelerator[C]. AIP Conference Proceedings, 2010, 1299: 3-11.

【9】Chu Y, Gan Z, Liang X, et al. High-energy large-aperture Ti: sapphire amplifier for 5 PW laser pulses[J]. Optics Letters, 2015, 40(21): 5011-5014.

【10】Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science Engineering, 2015, 3(1): 5-18.

【11】Chvykov V, Cao H, Nagymihaly R, et al. High peak and average power Ti:sapphire thin disk amplifier with extraction during pumping[J]. Optics Letters, 2016, 41(13): 3017-3020.

【12】Smr M, Muík J, Novák O, et al. Progress in kW-class picosecond thin-disk lasers development at the HiLASE[C]. SPIE, 2016, 9726: 972617.

【13】Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 2011, 19(1): 255-260.

【14】Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.

【15】Klenke A, Breitkopf S, Kienel M, et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2013, 38(13): 2283-2285.

【16】Bellanger C, Toulon B, Primot J, et al. Collective phase measurement of an array of fiber lasers by quadriwave lateral shearing interferometry for coherent beam combining[J]. Optics Letters, 2010, 35(23): 3931-3933.

【17】Klenke A, Seise E, Limpert J, et al. Basic considerations on coherent combining of ultrashort laser pulses[J]. Optics Express, 2011, 19(25): 25379-25387.

【18】Goodno G D, Shih C C, Rothenberg J E. Perturbative analysis of coherent combining efficiency with mismatched lasers[J]. Optics Express, 2010, 18(24): 25403-25414.

【19】Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nature Photonics, 2013, 7: 258-261.

【20】Müller M, Kienel M, Klenke A, et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 2016, 41(15): 3439-3442.

【21】Yu Hailong. Study on high power femtosecond fiber laser and coherent combination technology[D]. Changsha: National University of Defense Technology, 2016.
于海龙. 高功率飞秒光纤激光及其相干合成技术研究[D]. 长沙: 国防科学技术大学, 2016.

【22】Zhou S, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Optics Letters, 2007, 32(7): 871-873.

【23】Zaouter Y, Guichard F, Daniault L, et al. Femtosecond fiber chirped-and divided-pulse amplification system[J]. Optics Letters, 2013, 38(2): 106-108.

【24】Kienel M, Klenke A, Eidam T, et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification[J]. Optics Letters, 2014, 39(4): 1049-1052.

【25】Kienel M, Müller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 2016, 41(14): 3343-3346.

【26】Barthélémy A, Desfargesberthelemot A, Bouwmans G, et al. Spectral division amplification of a 40 nm bandwidth in a multicore Yb doped fiber and femtosecond pulse synthesis with in-fiber delay line[J]. Optics Express, 2015, 23(21): 27448-27456.

【27】Wilcox R, Dahlen D, Sano T. Femtosecond beam combination using diffractive optic pairs[C]. CLEO2017, 2017: SM4I.2.

【28】Zhou T, Ruppe J, Zhu C, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Optics Express, 2015, 23(6): 7442-7462.

【29】Breitkopf S, Wunderlich S, Eidam T, et al. Extraction of enhanced, ultrashort laser pulses from a passive 10 MHz stack and dump cavity[J]. Applied Physics B, 2016, 122(12): 297.

【30】Lilienfein N, Holzberger S, Pupeza I. Ultrafast optomechanical pulse picking[J]. Applied Physics B, 2017, 123(1): 47.

【31】Ruppe J, Chen S, Zhou T, et al. Coherent pulse stacking extension of CPA to 9 ns effectively-long stretched pulse duration[J]. CLEO2016, 2016: SM4I.2.

【32】Ruppe J, Chen S, Zhou T, et al. Extending CPA by at least an order of magnitude using coherent pulse stacking amplification[C]. 7th Conference of the International Committee on Ultrahigh Intensity Lasers, 2016.

【33】Ruppe J, Chen S, Sheikhsofla M, et al. Multiplexed coherent pulse stacking of 27 pulses in a 4+1 GTI resonator sequence[C]. Advanced Solid State Lasers, 2016: AM4A.6.

【34】Galvanauskas A. Coherent pulse stacking amplification extending chirped pulse amplification by orders of magnitude[C]. CLEO2017, 2017: SM4I.1.

引用该论文

Zhang Zhigang. Coherent Pulse Stacking—An Innovation Beyond the Chirped Pulse Amplification[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120001

张志刚. 相干脉冲堆积——超越啁啾脉冲放大的新技术[J]. 激光与光电子学进展, 2017, 54(12): 120001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF