首页 > 论文 > 光学学报 > 37卷 > 12期(pp:1213001--1)

基于微腔耦合结构金属弯曲波导的光透射特性

Light Transmission Characteristics of Metal Curved Waveguide Based on Microcavity Coupling Structures

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于微腔耦合结构的等离子体弯曲波导新型滤波器, 该滤波器由两个直角波导和一个矩形谐振腔组成, 光通过该结构会激发表面等离子体激元(SPPs)。采用时域有限差分(FDTD)法研究了此结构SPPs的传播特性。结果表明, 相比于传统的直波导结构, 由于其会引发双边耦合效应, 这种单微腔弯曲波导结构产生了更强烈的共振作用, 其耦合效率也得到了进一步的提高。数值仿真结果表明, 通过改变谐振腔的腔长, 也可达到线性调节滤波器共振波长的目的。此外, 在上述设计思路的基础上还提出了一种双微腔结构, 此结构由一个弯曲波导与左右两个谐振腔组成, 其可利用两个微腔透射波的叠加作用, 产生动态可调控的等离子诱导透明效应。

Abstract

A novel plasma curved waveguide filter based on microcavity coupling structure is presented, which consists of two rectangular waveguide and a rectangular resonant cavity. When light passes through the structure, surface plasmon polaritons (SPPs) can be excited. The propagation properties of the SPPs with this structure are investigated by the finite difference time domain (FDTD) method. The results show that, compared with the traditional straight waveguide structure, the single microcavity curved waveguide structure can generate stronger resonant interaction and higher coupling effect for the bilateral coupling effect induced by the structure. The numerical simulation results show that the resonant wavelength of the filter can be adjusted linearly by changing the cavity length of the resonator. In addition, based on the above design idea, a dual microcavity structure is also proposed. The structure consists of a bent waveguide and two resonant cavities at left and right, which can be used to produce dynamically tunable plasma induced transparency by the superposition of two microcavity transmission waves.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN252

DOI:10.3788/aos201737.1213001

所属栏目:集成光学

基金项目:国家自然科学基金(61465004,61765004)、广西自然科学基金(2016GXNSFAA380006,2013GXNSFAA019338,2013GXNSFAA0199335)、桂林电子科技大学研究生教育创新计划项目(2016YJCX95, YJCX201522)、广西精密导航技术与应用重点实验室项目(DH201703,DH201507)

收稿日期:2017-06-15

修改稿日期:2017-08-09

网络出版日期:--

作者单位    点击查看

肖功利:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004广西信息科技实验中心, 广西 桂林 541004
刘利:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
杨宏艳:桂林电子科技大学计算机与信息安全学院, 广西 桂林 541004
蒋行国:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
王宏庆:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
刘小刚:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
李海鸥:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
张法碧:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
傅涛:桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004

联系人作者:肖功利(xgl.hy@126.com)

备注:肖功利(1975-), 男, 博士, 副教授, 硕士生导师, 主要从事微纳光电子器件与表面等离激元等方面的研究。E-mail: xgl.hy@126.com

【1】Raether H. Surface plasmons on smooth and rough surfaces and on gratings[M]. Berlin: Springer-Verlag, 1988.

【2】Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

【3】Rexidaiguli Wujiaihemaiti. Optical resonators based on surface plasmon MIM waveguides[D]. Changsha: Hunan University, 2014.
热西代古丽·吾吉艾合买提. 基于表面等离子体MIM波导的光学谐振腔[D]. 长沙: 湖南大学, 2014.

【4】Wang Lingling, Zhang Zhen, Wang Liu, et al. Study of the surface plasmon band-stop filter based on the structure of rectangular resonator MIM waveguide[L]. Journal of Hunan University (Natural Science), 2012, 39(5): 65-68.
王玲玲, 张振, 王柳, 等. 基于矩形谐振腔MIM波导结构的表面等离子体带阻滤波器[J]. 湖南大学学报(自然科学版), 2012, 39(5): 65-68.

【5】Zhen Zhang. Study of the surface plasmon filter based on the structure of rectangular resonator waveguide[D]. Changsha: Hunan University, 2012.
张振. 基于矩形谐振腔波导结构表面等离子体滤波器的研究[D]. 长沙: 湖南大学, 2012.

【6】Pang Shaofang, Qu Shixian, Zhang Yongyuan. Filter characteristic research of MIM waveguide based on L shaped resonator[J]. Acta Optica Sinica, 2015, 35(6): 0623001.
庞绍芳, 屈世显, 张永元, 等. 基于L形谐振腔MIM波导结构滤波特性的研究[J]. 光学学报, 2015, 35(6): 0623001.

【7】Wei Lidan, Wang Hongqing, Yang Hongyan, et al. Optic transmission characteristics of embedded metal strip based on metal-insulator-metal waveguide[J]. Laser & Optoelectronics Progress, 2016, 53(9): 092401.
韦力丹, 王宏庆, 杨宏艳, 等. 内嵌金属块的金属-绝缘体-金属波导光透射特性[J]. 激光与光电子学进展, 2016, 53(9): 092401.

【8】Lee T W, Gray S K. Subwavelength light bending by metal slit structures[J]. Optics Express, 2005, 13(24): 9652-9659.

【9】Veronis G, Fan S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J]. Applied Physics Letters, 2005, 87(13): 131102.

【10】Duan G Y, Lang P L, Wang L L, et al. A band-pass plasmonic filter with dual-square ring resonator[J]. Modern Physics Letters B, 2014, 28(23): 1450188.

【11】Pang S F, Zhang Y Y, Huo Y P, et al. The filter characteristic research of metal-insulator-metal waveguide with double overlapping annular rings[J]. Plasmonics, 2015, 10(6): 1723-1728.

【12】Zhang Z, Shi F H, Chen Y H. Tunable multichannel plasmonic filter based on coupling-induced mode splitting[J]. Plasmonics, 2015, 10(1): 139-144.

【13】Wang H Q, Yang J B, Zhang J J, et al. Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure[J]. Optics Letters, 2016, 41(6): 1233-1236.

【14】Tao J, Huang X G, Lin X, et al. Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters[C]. Journal of the Optical Society of America B, 2010, 27(2): 323-327.

【15】Yun B F, Hu G H, Cui Y P. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide[J]. Journal of Physics D: Applied Physics, 2010, 43(38): 385102.

【16】Hu F F, Yi H X, Zhou Z P. Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities[J]. Optics Express, 2011, 19(6): 4848-4855.

【17】Hu F, Zhou Z. Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities[J]. Journal of the Optical Society of America B, 2011, 28(10): 2518-2523.

【18】Lu H, Liu X M, Gong Y K, et al. Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities[J]. Optics Express, 2011, 19(14): 12885-12890.

【19】Wang G X, Lu H, Liu X M, et al. Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Optics Express,2011, 19(4): 3513-3518.

【20】Xu Yang.Surface plasmon transmission property in metal-dielectric-metal structure[D]. Harbin: Harbin Institute of Technology, 2011.
徐杨. 表面等离子体在金属-电介质-金属结构内的传输特性[D]. 哈尔滨: 哈尔滨工业大学, 2011.

【21】Gu Kaihui. Hybrid induced transparency and fast/slow light manipulation in atom-assisted optomechanical cavity[D]. Changchun: Jilin University, 2015.
谷开慧. 原子辅助光力学腔的杂化诱导透明及快慢光调控[D]. 长春: 吉林大学, 2015.

【22】Sun Weijin, Dong Chao. The mechanism of the electromagnetically induced transparency and the ultraslow speed of light[J]. Physics and Engineering, 2004, 14(4): 24-25.
孙维瑾, 董超. 电磁诱导透明和导致极慢光速的机制[J]. 物理与工程, 2004, 14(4): 24-25.

【23】Chen Fang. The study on optical switches and filtering characteristics in waveguide-resonator coupled system[D]. Wuhan: Wuhan University, 2015.
陈方. 波导微腔耦合系统的光开关及滤波特性的研究[D]. 武汉: 武汉大学, 2015.

【24】Shi Zhendong, Zhao Haifa, Liu Jianlong, et al. Design of a metallic waveguide all-optical switch based on surface plasmon polaritons[J]. Acta Optica Sinica, 2015, 35(2): 0213001.
石振东, 赵海发, 刘建龙, 等. 基于表面等离激元的金属波导全光开关设计[J]. 光学学报, 2015, 35(2): 0213001.

【25】Shi Zhendong. Study of nonlinear all-optcial switching based on surface plasmon polaritons[D]. Harbin: Harbin Institute of Technology, 2013.
石振东. 基于表面等离激元的非线性全光开关研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

【26】Jiao Y C, Yang Z W, Zhang H, et al. Electromagnetically induced transparency in modulated laser fields[J]. Journal of Physics B: Atomic, Molecular, and Optical Physics, 2016, 50(3): 035001.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF