首页 > 论文 > 光学学报 > 37卷 > 12期(pp:1215007--1)

基于色彩权值和树形动态规划的立体匹配算

Stereo Matching Algorithm Based on Color Weights and Tree Dynamic Programming

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对立体匹配算法在图像非遮挡区域, 特别是弱纹理区域误匹配率较高的问题, 提出一种基于十字交叉窗口下自适应色彩权值和树形动态规划的立体匹配算法。首先结合颜色、梯度信息及Census变换作为相似性测度函数构建代价计算函数; 然后以图像的距离和色彩信息构建自适应十字交叉窗口, 并提出基于色彩权值的代价聚集方式; 将树形结构动态规划算法的思想引入到视差计算, 代替单独采用赢者通吃策略的方法, 对视差进行全局优化; 最后通过视差求精得到稠密视差图。实验结果表明, 本文算法在Middlebury测试平台4幅标准图像上非遮挡区域的平均误匹配率为2.45%, 同时对其他10组图像进行了对比评估, 本文算法有效地提高了图像非遮挡区域匹配的准确率。

Abstract

Aiming at the problem that the stereo matching algorithms have high mismatching rates in non-occluded regions of the images, especially the weak texture regions, a stereo matching algorithm based on adaptive color weights over cross window and tree dynamic programming is proposed. Firstly, we combine color, gradient information and census transform as similarity measure function to propose the cost calculation function. Then the adaptive cross window is constructed with distance and color information of the image, and the cost aggregation based on color weights is proposed. Instead of using winner-take-all strategy solely for global optimization of disparity, the dynamic programming algorithm based on tree structure is introduced to calculate disparity. Finally, the dense disparity maps are obtained by the process of disparity refinement. The experimental results demonstrate that on the Middlebury test platform, the average mismatching rate evaluated with proposed algorithm in non-occluded regions of four standard images is 2.45%. Meanwhile, the other ten images are compared and evaluated. The proposed algorithm effectively improves the accuracy of stereo matching in non-occluded regions.

投稿润色
补充资料

中图分类号:TP911.73

DOI:10.3788/aos201737.1215007

所属栏目:机器视觉

基金项目:江苏省重点研发计划(BE2016071, BE2017648)

收稿日期:2017-07-10

修改稿日期:2017-08-28

网络出版日期:--

作者单位    点击查看

许金鑫:河海大学物联网工程学院, 江苏 常州 213022
李庆武:河海大学物联网工程学院, 江苏 常州 213022江苏省常州市传感网与环境感知重点实验室, 江苏 常州 213002
刘艳:河海大学物联网工程学院, 江苏 常州 213022江苏省常州市传感网与环境感知重点实验室, 江苏 常州 213002
尤逸飞:河海大学物联网工程学院, 江苏 常州 213022

联系人作者:李庆武(li_qingwu@163.com)

备注:许金鑫(1993-), 男, 博士研究生, 主要从事图像处理方面的研究。E-mail: 2019377631@qq.com

【1】Lu Di, Lin Xue. A local stereo matching algorithm based on the combination of multiple similarity measures[J]. Robot, 2016, 38(1): 1-7.
卢迪, 林雪. 多种相似性测度结合的局部立体匹配算法[J]. 机器人, 2016, 38(1): 1-7.

【2】Scharstein D, Szeliski R.A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1/2/3): 7-42.

【3】Zhang Qiang, Lu Shiqiang, Li Haibin, et al. Research on underwater stereo matching method based on color segmentation[J]. Acta Optica Sinica, 2016, 36(8): 0815001.
张强, 卢士强, 李海滨,等. 基于色彩分割的水下立体匹配算法的研究[J]. 光学学报, 2016, 36(8): 0815001.

【4】Li Q W, Ma Y P, He F J, et al. Bionic vision-based intelligent power line inspection system[J]. Computational and Mathematical Methods in Medicine, 2017, 2017: 4964287.

【5】Bleyer M, Gelautz M.Simple but effective tree structures for dynamic programming-based stereo matching[C]. Third International Conference on Computer Vision Theory and Applications, 2008: 415-422.

【6】Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C].18th International Conference on Pattern Recognition, 2006, 3: 15-18.

【7】Wang H Q, Wu M, Zhang Y B, et al. Effective stereo matching using reliable points based graph cut[C]. Visual Communications and Image Processing, 2013: 1-6.

【8】Zhu Shiping, Li Zheng. A stereo matching algorithm using improved gradient and adaptive window[J].Acta Optica Sinica, 2015, 35(1): 0110003.
祝世平, 李政. 基于改进梯度和自适应窗口的立体匹配算法[J]. 光学学报, 2015, 35(1): 0110003.

【9】Lee J, Jun D, Eem C, et al. Improved census transform for noise robust stereo matching[J]. Optical Engineering, 2016, 55(6): 063107.

【10】Mei X, Sun X, Zhou M C, et al. On building an accurate stereo matching system on graphics hardware[C]. IEEE International Conference on Computer Vision Workshops, 2011, 21(5): 467-474.

【11】Shi Hua,Zhu Hong. Stereo matching based on adaptive matching windows and muti-feature fusion[J].Pattern Recognition and Artificial Intelligence, 2016, 29(3): 193-202.
时华, 朱虹. 基于自适应匹配窗及多特征融合的立体匹配[J]. 模式识别与人工智能, 2016, 29(3) : 193-202.

【12】Zhang K, Lu J B, Lafruit G. Cross-based local stereo matching using orthogonal integral images[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2009, 19(7): 1073-1079.

【13】Yao P, Zhang H, Xue Y B, et al. Iterative color-depth MST cost aggregation for stereo matching[C]. IEEE International Conference on Multimedia and Expo, 2016: 1-6.

【14】Zhu Shiping, Yan Lina, Li Zheng. Stereo matching algorithm based on improved census transform and dynamic programming[J].Acta Optica Sinica, 2016, 36(4): 0415001.
祝世平, 闫利那, 李政. 基于改进Census变换和动态规划的立体匹配算法[J]. 光学学报, 2016, 36(4): 0415001.

【15】Scharstein D, Szeliski R, Hirschmüller H. Middlebury stereo vision page[EB/OL]. [2017-05-22]. http://vision.Middlebury.edu/stereo.

【16】Hu T B, Qi B, Wu T J, et al. Stereo matching using weighted dynamic programming on a single-direction four-connected tree[J]. Computer Vision and Image Understanding, 2013, 116(8): 908-921.

【17】Hosni A, Rhemann C, Bleyer M, et al. Fast cost-volume filtering for visual correspondence and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(2): 504-511.

【18】Cheng F Y, Zhang H, Sun M G, et al. Cross-trees, edge and superpixel priors-based cost aggregation for stereo matching[J]. Pattern Recognition, 2015, 48(7): 2269-2278.

【19】Wang L Q, Liu Z, Zhang Z H. Feature based stereo matching using two-step expansion[J]. Mathematical Problems in Engineering, 2014, 2014: 452803.

【20】Wang L, Yang R G, Gong M L, et al. Real-time stereo using approximated joint bilateral filtering and dynamic programming[J]. Journal of Real-Time Image Processing, 2014, 9(3): 447-461.

引用该论文

Xu Jinxin,Li Qingwu,Liu Yan,You Yifei. Stereo Matching Algorithm Based on Color Weights and Tree Dynamic Programming[J]. Acta Optica Sinica, 2017, 37(12): 1215007

许金鑫,李庆武,刘艳,尤逸飞. 基于色彩权值和树形动态规划的立体匹配算[J]. 光学学报, 2017, 37(12): 1215007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF