首页 > 论文 > 液晶与显示 > 32卷 > 12期(pp:999-1005)

基于核模糊C-均值和EM混合聚类算法的遥感图像分割

Remote sensing image segmentation based on KFCM and EM hybrid clustering algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对聚类算法在应用中分割速度慢、抑制噪声能力弱等问题, 本文提出一种基于核模糊C-均值(Kernel Fuzzy C-means, KFCM)和融合期望最大化(EM)算法混合聚类的遥感图像分割。首先给原始KFCM算法引入隐含变量来对像素预定义类别, 然后利用EM算法评价预定义的类别是否最优, 以此完成对遥感图像的聚类分割。在利用EM算法进行评价时, 对KFCM引入空间邻域信息, 采用惯性权重对其初始化参数进行优化增强算法效率。与传统的聚类分割方法进行比较, 研究结果表明, 该方法速度快、效果好、精度也能满足应用要求, 具有较高的应用价值。

Abstract

Aiming at the problem that the clustering algorithm is slow in the application and weak in noise suppression, this article proposes a remote sensing image segmentation based on improved Kernel Fuzzy C-means (KFCM) and EM algorithm hybrid clustering. Firstly, the implicit variables are introduced into the original KFCM algorithm to predefine the pixels, and then the EM algorithm is used to evaluate whether the predefined categories are optimal, so as to complete the clustering of the remote sensing images. When using the EM algorithm for evaluation, the KFCM introduces the spatial neighborhood information and the inertia weight is used to optimize the initialization parameters to enhance the efficiency of the algorithm. Compared with the traditional clustering methods, the results show that the method in this article is fast and effective, and the precision can meet the application requirements and has high application value.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:P2

DOI:10.3788/yjyxs20173212.0999

所属栏目:图像处理

基金项目:国家自然科学基金(No.61373112);住房城乡建设部科学技术项目计划(No.2016-R2-045);陕西省自然科学基金青年基金(No.2014JM8343)

收稿日期:2017-05-16

修改稿日期:2017-08-25

网络出版日期:--

作者单位    点击查看

王 民:西安建筑科技大学 信息与控制工程学院, 陕西 西安 710055
张 鑫:西安建筑科技大学 信息与控制工程学院, 陕西 西安 710055
贠卫国:西安建筑科技大学 信息与控制工程学院, 陕西 西安 710055
卫铭斐:西安建筑科技大学 信息与控制工程学院, 陕西 西安 710055
王 静:西安建筑科技大学 信息与控制工程学院, 陕西 西安 710055

联系人作者:王民(wangmin1329@163.com)

备注:王民(1959-), 男, 江苏常州人, 教授, 硕士生导师, 主要从事智能信息处理方面的研究工作。

【1】沈毅.高分辨率遥感图像处理若干关键技术研究[D].南京: 南京航空航天大学, 2012.
SHEN Y. Research on some key technologies of high resolution remote sensing image processing [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)

【2】吴一全, 沈毅, 陶飞翔.基于局部空间信息KFCM的遥感图像聚类算法[J].地球信息科学学报, 2014, 16(5): 769-775.
WU Y Q, SHEN Y, TAO F X. An algorithm of remote sensing image clustering based on kernel fuzzy C-means with local spatial information [J]. Journal of Geo-Information Science, 2014, 16(5): 769-775. (in Chinese)

【3】李晓冰.基于自适应模糊加权指数的FCM聚类测量图像分割方法[J].红外技术, 2013, 35(3): 146-149.
LI X B. A FCM segmentation method of measurement of image based on adaptive coefficient of fuzzy weight [J]. Infrared Technology, 2013, 35(3): 146-149. (in Chinese)

【4】GANESH M, PALANISAMY V. Multiple-kernel fuzzy C-means algorithm for satellite image segmentation [J]. European Journal of Scientific Research, 2012, 83(2): 255-263.

【5】施海滨, 周勇.混合聚类彩色图像分割方法研究[J].计算机工程与应用, 2011, 47(9): 181-185.
SHI H B, ZHOU Y. Research for color image segmentation based on hybrid clustering [J]. Computer Engineering and Applications, 2011, 47(9): 181-185. (in Chinese)

【6】汤峥, 宋余庆, 刘哲.基于粒子群优化和EM算法的图像聚类研究[J].小型微型计算机系统, 2015, 36(7): 1602-1606.
TANG Z, SONG Y Q, LIU Y. Research on image clustering based on particle swarm optimization and expectation maximization algorithm [J]. Journal of Chinese Computer Systems, 2015, 36(7): 1602-1606. (in Chinese)

【7】刘璐, 吴成茂.模糊局部均值聚类分割法改进及其应用[J].计算机工程与设计, 2015, 36(12): 3365-3369, 3407.
LIU L, WU C M. Improvement and application of fuzzy local mean clustering segmentation method [J]. Computer Engineering and Design, 2015, 36(12): 3365-3369, 3407. (in Chinese)

【8】HUANG H C, CHUANG Y Y, CHEN C S. Multiple kernel fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(1): 120-134.

【9】岳佳, 王士同.高斯混合模型聚类中EM算法及初始化的研究[J].微计算机信息, 2006, 22(33): 244-246, 302.
YUE J, WANG S T. Algorithm EM and its initialization in Gaussian-mixture-model based clustering [J]. Control & Automation, 2006, 22(33): 244-246, 302. (in Chinese)

【10】YANG M S, LAI C Y, LIN C Y. A robust EM clustering algorithm for Gaussian mixture models [J]. Pattern Recognition, 2012, 45(11): 3950-3961.

【11】NICKABADI A, EBADZADEH M M, SAFABAKHSH R. A novel particle swarm optimization algorithm with adaptive inertia weight [J]. Applied Soft Computing, 2011, 11(4): 3658-3670.

【12】王晓辉, 吴禄慎, 陈华伟, 等.应用改进的粒子群优化模糊聚类实现点云数据的区域分割[J].光学 精密工程, 2017, 25(4): 1095-1105.
WANG X H, WU L S, CHEN H W, et al. Region Segmentation of point cloud data based on improved particle swarm optimization fuzzy clustering [J]. Optics and Precision Engineering, 2017, 25(4): 1095-1105. (in Chinese)

【13】RADIVOJAC P, CLARK W T, ORON T R, et al. A large-scale evaluation of Computational protein function prediction [J]. Nature Methods, 2013, 10(3): 221-227.

引用该论文

WANG Min,ZHANG Xin,YUN Wei-guo,WEI Ming-fei,WANG Jing. Remote sensing image segmentation based on KFCM and EM hybrid clustering algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(12): 999-1005

王 民,张 鑫,贠卫国,卫铭斐,王 静. 基于核模糊C-均值和EM混合聚类算法的遥感图像分割[J]. 液晶与显示, 2017, 32(12): 999-1005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF