首页 > 论文 > 中国激光 > 47卷 > 6期(pp:600001--1)

硅基光电计算 (封面文章)

Computing on Silicon Photonic Platform (Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

数十年来,人们一直在探索基于光的计算体系,期望通过光的特性,突破电子计算机的局限,从而提高计算速度和降低能耗。然而,传统光计算由于缺乏有效的逻辑、存储、互连单元,以及合理的应用场景,光计算止步于概念研究阶段。在当今大数据时代的推动下,信息通量及用量呈爆炸性增长。具有高集成度、大带宽、低成本、低能耗特征的硅基光电子技术应运而生,日趋成熟,并且验证了光电融合这一信息技术发展的趋势。光计算也随之向光电计算转变。分析近年来硅基光电子技术在光电计算方面的应用和发展,如在人工神经网络、非多项式时间复杂度难题的启发式算法、光电模拟计算、集成光电量子处理器和神经拟态计算等,重点论述了硅基光电子技术在促进光电计算的信息连接、数据处理和实用化演进等方面的优势,提出了硅基光电计算概念及初级系统,以突破传统电子技术或光子技术在计算方面的不足及其在人工智能等高性能计算领域中的限制。

Abstract

Scientists have been exploring the optical computing system for decades, in hoping that it will have faster speed and lower energy consumption to break the limitations of the traditional electronic computing system. However, due to the ineffective optical logic units, slow electronic interconnects, and lack of optical memory, the idea of the optical computing did not go too far and was eventually abandoned. In the era of big data, the flow and usage of information have been increased exponentially, which provides a unique opportunity for the rapid development of the silicon photonic technology. The heterogeneous integration of electronics and photonics on the same silicon substrate, the Silicon Photonics, ensures a wide-bandwidth, high-speed, low-cost, low energy-consumption, and application-oriented optoelectronic computing platform. Here, we review the recent efforts of computing using silicon photonic technology, including artificial neural network accelerators, heuristic solvers of nondeterministic polynomial problems, analog calculations, quantum logic processors, and neuromorphic photonics, and propose a computing structure based on silicon photonic platform to take the advantages of high speed optical parallel processing and high capacity optical interconnections at the same time. We expect the Silicon Photonics will be the best technology to solve the computing challenges and problems in the electronical or optical domain.

中国激光微信矩阵
补充资料

中图分类号:TN29

DOI:10.3788/CJL202047.0600001

所属栏目:综述

基金项目:国家自然科学基金、深圳市战略新兴产业发展专项基金;

收稿日期:2020-03-13

修改稿日期:2020-04-26

网络出版日期:2020-06-01

作者单位    点击查看

周治平:北京大学信息科学技术学院电子系区域光纤通信网与新型光通信系统国家重点实验室, 北京 100871北京大学深圳研究院, 广东 深圳 518057北京大学纳光电子前沿科学中心, 北京 100871
许鹏飞:北京大学信息科学技术学院电子系区域光纤通信网与新型光通信系统国家重点实验室, 北京 100871
董晓文:华为技术有限公司中央研究院数据中心技术实验室, 广东 深圳 518000

联系人作者:许鹏飞(xupengf@pku.edu.cn)

备注:国家自然科学基金、深圳市战略新兴产业发展专项基金;

【1】Zhou Z P. Silicon photonics[M]. Beijing: Peking University Press, 2012, 8.
周治平. 硅基光电子学[M]. 北京: 北京大学出版社, 2012, 8.

【2】Zhou Z P. Silicon photonics and its applications [J]. Optics & Optoelectronic Technology. 2018, 16(1): 6-10.
周治平. 硅基光电子学及其应用 [J]. 光学与光电技术. 2018, 16(1): 6-10.

【3】Atabaki A H, Moazeni S, Pavanello F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip [J]. Nature. 2018, 556(7701): 349-354.Atabaki A H, Moazeni S, Pavanello F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip [J]. Nature. 2018, 556(7701): 349-354.

【4】Sun C, Wade M T, Lee Y, et al. Single-chip microprocessor that communicates directly using light [J]. Nature. 2015, 528(7583): 534-538.

【5】Liu W L, Li M, Guzzon R S, et al. A fully reconfigurable photonic integrated signal processor [J]. Nature Photonics. 2016, 10(3): 190-195.

【6】Ribeiro A, Ruocco A, Vanacker L, et al. Demonstration of a 4×4-port universal linear circuit [J]. Optica. 2016, 3(12): 1348-1357.

【7】Kitayama K I, Notomi M, Naruse M, et al. Novel frontier of photonics for data processing: photonic accelerator [J]. APL Photonics. 2019, 4(9): 090901.

【8】Wang F, Wang H, Bian Y M, et al. Applications of deep learning in computational imaging [J]. Acta Optica Sinica. 2020, 40(1): 0111002.
王飞, 王昊, 卞耀明, 等. 深度学习在计算成像中的应用 [J]. 光学学报. 2020, 40(1): 0111002.

【9】Zuo C, Feng S J, Zhang X Y, et al. Deep learning based computational imaging: status, challenges, and future [J]. Acta Optica Sinica. 2020, 40(1): 0111003.
左超, 冯世杰, 张翔宇, 等. 深度学习下的计算成像: 现状、挑战与未来 [J]. 光学学报. 2020, 40(1): 0111003.

【10】Fang L, Dai Q H. Computational light field imaging [J]. Acta Optica Sinica. 2020, 40(1): 0111001.
方璐, 戴琼海. 计算光场成像 [J]. 光学学报. 2020, 40(1): 0111001.

【11】Sze V, Chen Y H, Yang T J, et al. Efficient processing of deep neural networks: a tutorial and survey [J]. Proceedings of the IEEE. 2017, 105(12): 2295-2329.

【12】LeCun Y, Bengio Y, Hinton G E. Deep learning [J]. Nature. 2015, 521(7553): 436-444.

【13】Schmidhuber J. Deep learning in neural networks: an overview [J]. Neural Networks. 2015, 61: 85-117.

【14】OpenAI. AI. -05-16)[2020-03-13] . https:∥openai.com/blog/ai-and-compute/. 2018.

【15】Harris N C, Carolan J, Bunandar D, et al. Linear programmable nanophotonic processors [J]. Optica. 2018, 5(12): 1623-1631.

【16】Miller D A B. Self-configuring universal linear optical component [Invited] [J]. Photonics Research. 2013, 1(1): 1-15.

【17】Miller D A B. Perfect optics with imperfect components [J]. Optica. 2015, 2(8): 747-750.

【18】Clements W R, Humphreys P C, Metcalf B J, et al. Optimal design for universal multiport interferometers [J]. Optica. 2016, 3(12): 1460-1465.

【19】Shen Y C, Harris N C, Skirlo S, et al. Deep learning with coherent nanophotonic circuits [J]. Nature Photonics. 2017, 11(7): 441-446.

【20】Hamerly R, Bernstein L, Sludds A, et al. Large-scale optical neural networks based on photoelectric multiplication [J]. Physical Review X. 2019, 9(2): 021032.

【21】Williamson I A D, Hughes T W, Minkov M, et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2020, 26(1): 7700412.

【22】Bangari V, Marquez B A, Miller H, et al. Digitalelectronics and analog photonics for convolutional neural networks (DEAP-CNNS) [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2020, 26(1): 7701213.

【23】Fang M Y S, Manipatruni S, Wierzynski C, et al. Design of optical neural networks with component imprecisions [J]. Optics Express. 2019, 27(10): 14009-14029.

【24】Bagherian H, Skirlo S, Shen Y C, et al. On-chip optical convolutional neural networks [2020-04-26].https:∥www.researchgate.net/publication/326988082_On-Chip_Optical_Convolutional_Neural_Networks.[2020-04-26]. 0.

【25】Hughes T W, Minkov M, Shi Y, et al. Training of photonic neural networks through in situ backpropagation and gradient measurement [J]. Optica. 2018, 5(7): 864-871.

【26】Haribara Y, Utsunomiya S, Yamamoto Y. Acoherent Ising machine for MAX-CUT problems: performance evaluation against semidefinite programming and simulated annealing [M]. ∥Principles and Methods of Quantum Information Technologies. Tokyo: Springer. 2016, 251-262.

【27】Roques-Carmes C, Shen Y C, Zanoci C, et al. Heuristic recurrent algorithms for photonic Ising machines [J]. Nature Communications. 2020, 11: 249.

【28】Bohm F, Inagaki T, Inaba K, et al. Understanding dynamics of coherent Ising machines through simulation of large-scale 2D Ising models [J]. Nature Communications. 2018, 9(1): 5020.

【29】Inagaki T, Haribara Y, Igarashi K, et al. A coherent Ising machine for 2000-node optimization problems [J]. Science. 2016, 354(6312): 603-606.

【30】Inagaki T, Inaba K, Hamerly R, et al. Large-scale Ising spin network based on degenerate optical parametric oscillators [J]. Nature Photonics. 2016, 10(6): 415-419.

【31】McMahon P L, Marandi A, Haribara Y, et al. A fully programmable 100-spin coherent Ising machine withall-to-all connections [J]. Science. 2016, 354(6312): 614-617.

【32】Roques-Carmes C. Solja i M. Photonic Ising machines go big [J]. Physics. 2019, 12: 61.

【33】Pierangeli D, Marcucci G, Conti C. Large-scale photonic Ising machine by spatial light modulation [J]. Physical Review Letters. 2019, 122(21): 213902.

【34】Duport F, Schneider B, Smerieri A, et al. All-optical reservoir computing [J]. Optics Express. 2012, 20(20): 22783-22795.

【35】Duport F, Smerieri A, Akrout A, et al. Fully analogue photonic reservoir computer [J]. Scientific Reports. 2016, 6: 22381.

【36】Takano K, Sugano C, Inubushi M, et al. Compact reservoir computing with a photonic integrated circuit [J]. Optics Express. 2018, 26(22): 29424-29439.

【37】Vandoorne K. Mechet P, van Vaerenbergh T, et al. Experimental demonstration of reservoir computing on a silicon photonics chip [J]. Nature Communications. 2014, 5(1): 3541.

【38】Zhou J H. All-optical discrete Fourier transform based on multimode interference couplers [J]. IEEE Photonics Technology Letters. 2010, 22(15): 1093-1095.

【39】Zhou J H. Realization of discrete Fourier transform and inverse discrete Fourier transform on one single multimode interference coupler [J]. IEEE Photonics Technology Letters. 2011, 23(5): 302-304.

【40】Hall T J, Hasan M. Universal discrete Fourier optics RF photonic integrated circuit architecture [J]. Optics Express. 2016, 24(7): 7600-7610.

【41】Kou S S, Yuan G H, Wang Q, et al. On-chip photonic Fourier transform with surface plasmon polaritons [J]. Light-Science & Applications. 2016, 5(2): e16034.

【42】Ferrera M, Park Y, Razzari L, et al. On-chip CMOS-compatible all-optical integrator [J]. Nature Communications. 2010, 1: 29.

【43】Mohammadi Estakhri N, Edwards B, Engheta N. Inverse-designed metastructures that solve equations [J]. Science. 2019, 363(6433): 1333-1338.

【44】Wang J W, Paesani S, Ding Y H, et al. Multidimensional quantum entanglement with large-scale integrated optics [J]. Science. 2018, 360(6386): 285-291.

【45】Qiang X G, Zhou X Q, Wang J W, et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing [J]. Nature Photonics. 2018, 12(9): 534-539.

【46】Ponulak F, Kasinski A. Introduction to spiking neural networks: information processing, learning and applications [J]. Acta Neurobiologiae Experimentalis. 2011, 71(4): 409-433.

【47】Cheng Z G, Ríos C. Pernice W H P, et al. On-chip photonic synapse [J]. Science Advances. 2017, 3(9): e1700160.

【48】Peng H T. Nahmias M A, de Lima T F, et al. Neuromorphic photonic integrated circuits [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2018, 24(6): 6101715.

【49】Shastri B J, Tait A N. Ferreira de Lima T, et al. Neuromorphic photonics, principles of [M]. ∥Encyclopedia of complexity and systems science. Berlin, Heidelberg: Springer. 2018, 1-37.

【50】Chakraborty I, Saha G, Sengupta A, et al. Toward fast neural computing using all-photonic phase change spiking neurons [J]. Scientific Reports. 2018, 8: 12980.

【51】Feldmann J, Youngblood N, Wright C D, et al. All-optical spiking neurosynaptic networks with self-learning capabilities [J]. Nature. 2019, 569(7755): 208-214.

【52】Tait A N. Lima T F D, Nahmias M A, et al. A silicon photonic modulator neuron[2020-03-13]. https:∥www.researchgate.net/publication/330034758_A_silicon_photonic_modulator_neuron.[2020-03-13]. 0.

【53】Tait A N, Nahmias M A, Shastri B J, et al. Broadcast and weight: an integrated network for scalable photonic spike processing [J]. Journal of Lightwave Technology. 2014, 32(21): 4029-4041.

引用该论文

Zhou Zhiping,Xu Pengfei,Dong Xiaowen. Computing on Silicon Photonic Platform[J]. Chinese Journal of Lasers, 2020, 47(6): 0600001

周治平,许鹏飞,董晓文. 硅基光电计算[J]. 中国激光, 2020, 47(6): 0600001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF