光学 精密工程, 2017, 25 (11): 2835, 网络出版: 2018-01-17   

极紫外光刻机多层膜反射镜表面碳污染的清洗

Cleaning of carbon contamination on multilayer optics of EUVL
作者单位
中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033
摘要
针对极紫外(EUV)光刻机工作过程中,多层膜反射镜表面沉积碳污染造成的反射率下降问题展开研究,讨论了多层膜反射镜表面碳污染清洗方法。首先描述了在EUV曝光过程中多层膜表面的碳污染形成过程,简单阐述了碳污染对多层膜反射镜的危害。然后从清洗机理、速率以及效果等方面详细描述了多种EUV多层膜表面碳污染清洗方法,分析对比了各清洗技术在清洗速率和效果等方面的优缺点。分析表明: 离子体氧和活化氧清洗速率相差不多,可达到2 nm/min,但清洗过程中容易造成表面氧化; 等离子体氢和原子氢的清洗速率相对较慢,一般在0.37 nm/min左右,但清洗过程中不易产生氧化。最后针对不同方法应用于在线清洗EUV多层膜反射镜过程中将遇到的问题和难点进行了讨论。
Abstract
This paper focuses on the reflectivity decrease of reflective elements caused by the carbon contamination deposited on multilayers during EUV( Extreme Ultraviolet) lithography working and emphasizes the clear method of carbon contamination deposited on multilayers. The process of carbon contamination deposited on multilayers was elucidated and the damage of carbon contamination on the multilayers was introduced briefly. Several kinds of cleaning methods for carbon contamination deposited on multilayers were described in detail from cleaning mechanism, removing rate and cleaning effect, and their advantages and disadvantages were analyzed. The result indicates that the cleaning rates of plasma oxygen and activated oxygen reach 2 nm/min, but the multilayer surface is easy to be oxidized in cleaning process; and the plasma hydrogen and atomic hydrogen have relatively slow cleaning rates, they are only about 0.37 nm/min, but the multilayer surface is hardly to be oxidized. Moreover, the difficulties of different cleaning methods for X-ray multilayer mirrors in-situ are discussed.

宋源, 卢启鹏, 龚学鹏, 王依, 彭忠琦. 极紫外光刻机多层膜反射镜表面碳污染的清洗[J]. 光学 精密工程, 2017, 25(11): 2835. SONG Yuan, LU Qi-peng, GONG Xue-peng, WANG Yi, PENG Zhong-qi. Cleaning of carbon contamination on multilayer optics of EUVL[J]. Optics and Precision Engineering, 2017, 25(11): 2835.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!