Frontiers of Optoelectronics, 2017, 10 (4): 329, 网络出版: 2018-01-17   

Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes

Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes
作者单位
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices,South China University of Technology, Guangzhou 510640, China
摘要
Abstract
Inkjet printing (IJP) is a versatile technique for realizing high-accuracy patterns in a cost-effective manner. It is considered to be one of the most promising candidates to replace the expensive thermal evaporation technique, which is hindered by the difficulty of fabricating low-cost, large electroluminescent devices, such as organic lightemitting diodes (OLEDs) and quantum dot light-emitting diodes (QLEDs). In this invited review, we first introduce the recent progress of some printable emissive materials, including polymers, small molecules, and inorganic colloidal quantum dot emitters in OLEDs and QLEDs. Subsequently, we focus on the key factors that influence film formation. By exploring stable ink formulation, selecting print parameters, and implementing droplet deposition control, a uniform film can be obtained, which in turn improves the device performance. Finally, a series of impressive inkjet-printed OLEDs and QLEDs prototype display panels are summarized, suggesting a promising future for IJP in the fabrication of large and high-resolution flat panel displays.

Luhua LAN, Jianhua ZOU, Congbiao JIANG, Benchang LIU, Lei WANG, Junbiao PENG. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes[J]. Frontiers of Optoelectronics, 2017, 10(4): 329. Luhua LAN, Jianhua ZOU, Congbiao JIANG, Benchang LIU, Lei WANG, Junbiao PENG. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes[J]. Frontiers of Optoelectronics, 2017, 10(4): 329.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!