首页 > 论文 > 光学学报 > 38卷 > 1期(pp:0106006--1)

保偏光纤陀螺横向磁场误差的温度依赖性

Temperature Dependence of Transverse Magnetic Error in a Polarization Maintaining Fiber Optic Gyroscope

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对无骨架光纤环的保偏光纤陀螺中横向磁场误差的温度依赖性研究发现, 保偏光纤线双折射以及Verdet常数固有的温度依赖性可以导致横向磁场误差随着温度变化而变化。利用琼斯矩阵方法推导了保偏光纤陀螺横向磁场误差与温度的关系, 并进行了实验验证。实验结果表明, 对于长度为1 km, 半径为6 cm, 光纤线双折射为2027 rad·m-1, 最大扭转率为0.382 rad·m-1的无骨架光纤环, 在 1 mT横向磁场以及-40~60 ℃温度场作用下, 光纤陀螺的横向磁场误差由26.51 (°)·h-1 增加到30.43 (°)·h-1。

Abstract

An investigation of the temperature dependence of transverse magnetic error in the polarization maintaining fiber optic gyroscope (PM-FOG) with non-skeleton coil is presented. It is found that the transverse magnetic error changes with the temperature, which can result from the temperature dependence of linear birefringence and Verdet constant of polarization maintaining fiber (PMF). Based on Jones matrix method, the relationship between the transverse magnetic error and temperature in PM-FOG is deduced, and the experimental verification is carried out. The experimental results show that for the non-skeleton coil with length of 1 km, radius of 6 cm, linear birefringence of 2027 rad·m-1, and maximum twist rate of 0.382 rad·m-1, the transverse magnetic error changes from 26.51 (°)·h-1 to 30.43 (°)·h-1, under 1 mT transverse magnetic field and the temperature range of -40 ℃ to 60 ℃.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:V241.5

DOI:10.3788/AOS201838.0106006

所属栏目:光纤光学与光通信

基金项目:中国国防科技预研项目(A0420132202)、国家自然科学基金(51309059)

收稿日期:2017-06-19

修改稿日期:2017-09-10

网络出版日期:--

作者单位    点击查看

李绪友:哈尔滨工程大学自动化学院, 黑龙江 哈尔滨 150001
刘攀:哈尔滨工程大学自动化学院, 黑龙江 哈尔滨 150001
光星星:哈尔滨工程大学自动化学院, 黑龙江 哈尔滨 150001
郭衍达:哈尔滨工程大学自动化学院, 黑龙江 哈尔滨 150001
孟庆文:哈尔滨工程大学自动化学院, 黑龙江 哈尔滨 150001
李光春:哈尔滨工程大学自动化学院, 黑龙江 哈尔滨 150001

联系人作者:刘攀(liupan003@hrbeu.edu.cn)

备注:李绪友(1964-), 男, 博士, 教授, 主要从事光纤陀螺、光纤测量技术方面的研究。E-mail: lixuyou@hrbeu.edu.cn

【1】Zhang G C. The principles and technologies of fiber-optic gyroscope[M]. Beijing: National Defence Industry Press, 2008: 1-4.
张桂才. 光纤陀螺原理与技术[M]. 北京: 国防工业出版社, 2008: 1-4.

【2】Wang L H, Xu X S, Liu X X, et al. Investigation on modeling methods of axial magnetic field error characteristics in small fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 2012, 20(1): 84-89.
王立辉, 徐晓苏, 刘锡祥, 等. 小型化光纤陀螺的轴向磁场误差特性建模方法探讨[J]. 中国惯性技术学报, 2012, 20(1): 84-89.

【3】Sanders G A, Sanders S J, Strandjord L K, et al. Fiber optic gyroscope development at Honeywell[C]. International Society for Optics and Photonics, 2016: 985207.

【4】Xu H J, Zhang W Y, Xu X B, et al. Polarization bias error model and simulation of fiber-optic gyroscope with double optical length[J]. Acta Optic Sinica, 2014, 34(10): 1006002.
徐宏杰, 张文艳, 徐小斌, 等. 双光程光纤陀螺偏振误差模型与仿真[J]. 光学学报, 2014, 34(10): 1006002.

【5】Lefèvre H C. The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology[J]. Optical Fiber Technology, 2013, 19(6): 828-832.

【6】Hotate K, Tabe K. Drift of an optical fiber gyroscope caused by the Faraday effect: Influence of the earth′s magnetic field[J]. Applied Optics, 1986, 25(7): 1086-1092.

【7】Li J T, Fang J C. Magnetic shielding method and experiment study of inertial measurement unit based on high precision fiber-optic gyroscope[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 2106-2116.
李金涛, 房建成. 高精度光纤 IMU 的磁屏蔽方法及实验研究[J]. 航空学报, 2011, 32(11): 2106-2116.

【8】Wen H, Terrel M A, Kim H K, et al. Measurements of the birefringence and Verdet constant in an air-core fiber[J]. Journal of Lightwave Technology, 2009, 27(15): 3194-3201.

【9】Liu J, Xiao C, Pan X, et al. Research on inhibiting radial magnetic sensitivity of fiber-optic gyroscope[J]. Chinese Journal of Lasers, 2015, 42(3): 0305005.
刘军, 肖程, 潘欣, 等. 抑制光纤陀螺径向磁敏感性研究[J]. 中国激光, 2015, 42(3): 0305005.

【10】Zhou Y, Zhao Y, Tian H, et al. Theory and compensation method of axial magnetic error induced by axial magnetic field in a polarization-maintaining fiber optic gyro[J]. Optical Engineering, 2016, 55(12): 126106.

【11】Hu Z F, Jiang R Z, Zhou J. Magnetic error analyzing and suppressing on a polarization-maintaining interferometric fiber optic gyroscope[J]. Acta Optica Sinica, 2014, 34(6): 0606003.
胡宗福, 姜润知, 周剑. 保偏光纤干涉型陀螺的磁场误差分析与抑制方法[J]. 光学学报, 2014, 34(6): 0606003.

【12】Liu P, Li X Y, Guang X X, et al. Drift suppression in a dual-polarization fiber optic gyroscope caused by the Faraday effect[J]. Optics Communications, 2017, 394: 122-128.

【13】Liu P, Li X Y, Guang X X, et al. Bias error caused by the Faraday effect in fiber optical gyroscope with double sensitivity[J]. IEEE Photonics Technology Letters, 2017, 29(15): 17012677.

【14】Song N F, Guan Y M, Jia M. Analysis of multi-parameters effect on Shupe error in fiber optic gyroscope fiber coil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 31(5): 569-573.
宋凝芳, 关月明, 贾明. 光纤陀螺光纤环 Shupe 误差的多参数影响仿真分析[J]. 北京航空航天大学学报, 2011, 37(5): 569-573.

【15】Li J L, Xu H L, He J. Temperature compensation of start-up drift for fiber optic gyroscope based on wavelet network[J]. Acta Optica Sinica, 2011, 31(5): 0506005.
李家垒, 许化龙, 何靖. 基于小波网络的光纤陀螺启动漂移温度补偿[J]. 光学学报, 2011, 31(5): 0506005.

【16】Liu Y Y, Yang G L, Li S Y. Application of BP-AdaBoost model in temperature compensation for fiber optic gyroscope bias[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 235-239.
刘元元, 杨功流, 李思宜. BP-AdaBoost模型在光纤陀螺零偏温度补偿中的应用[J]. 北京航空航天大学学报, 2014, 40(2): 235-239.

【17】Li X Y, Ling W W, Xu Z L, et al. Design of a new spool for fiber coil based on cross winding pattern[J]. Acta Optica Sinica, 2015, 35(6): 0606002.
李绪友, 凌卫伟, 许振龙, 等. 基于交叉法绕制的光纤环的槽体设计[J]. 光学学报, 2015, 35(6): 0606002.

【18】Zhang D W, Zhao Y X, Fu W L, et al. Nonreciprocal phase shift caused by magnetic-thermal coupling of a polarization maintaining fiber optic gyroscope[J]. Optics Letters, 2014, 39(6): 1382-1385.

【19】DeI R E, Zenteno L A, Starodumov A N, et al. All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop[J]. Optics Letters, 1997, 22(7): 481-483.

【20】Williams P A, Rose A H, Day G W, et al. Temperature dependence of the Verdet constant in several diamagnetic glasses[J]. Applied Optics, 1991, 30(10): 1176-1178.

【21】Zhao H, Chen M, Li G. Temperature dependence of the PER in PM-PCF coil[J]. Chinese Optics Letters, 2012, 10(10): 100603.

【22】Andronova I A, Malykin G B. Physical problems of fiber gyroscopy based on the Sagnac effect[J]. Physics-Uspekhi, 2002, 45(8): 793-817.

【23】Xu X, Teng F, Zhang Z, et al. Analysis and simulation of a fiber optical gyroscope with Shupe error compensated optically[J]. Journal of Modern Optics, 2014, 61(11): 931-937.

【24】Kim D H, Kang J U. Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity[J]. Optics Express, 2004, 12(19): 4490-4495.

引用该论文

Li Xuyou,Liu Pan,Guang Xingxing,Guo Yanda,Meng Qingwen,Li Guangchun. Temperature Dependence of Transverse Magnetic Error in a Polarization Maintaining Fiber Optic Gyroscope[J]. Acta Optica Sinica, 2018, 38(1): 0106006

李绪友,刘攀,光星星,郭衍达,孟庆文,李光春. 保偏光纤陀螺横向磁场误差的温度依赖性[J]. 光学学报, 2018, 38(1): 0106006

被引情况

【1】宋凝芳,胡雪妍,徐小斌,蔡伟,高福宇. 实芯保偏光子晶体光纤散射测量与分析. 激光与光电子学进展, 2019, 56(1): 10601--1

【2】戴邵武,郑百东,戴洪德,聂子健. 基于EMD-LWT的光纤陀螺阈值去噪. 光电工程, 2019, 46(5): 180333--1

【3】王学勤,张彤,梁兰菊,郑艳彬. 光纤环偏振耦合分布及绕环光纤拍长测试技术. 激光与光电子学进展, 2020, 57(23): 230602--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF