首页 > 论文 > 光学学报 > 38卷 > 1期(pp:0111005--1)

基于认知模型的遥感图像有效飞机检测系统

Valid Aircraft Detection System for Remote Sensing Images Based on Cognitive Models

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对传统飞机目标检测算法和现有机器学习检测算法存在的问题, 提出了遥感影像中的一种有效飞机检测概念; 在认知模型下使用基于深度学习的全卷积检测和分割网络, 设计了一种有效飞机目标检测系统并对其进行了仿真; 构建了一种检测认知模型, 并设计了各模块的功能。实验结果证明了该系统的有效性, 该系统为开展目标智能检测提供了一种全新的思路和方法。

Abstract

In view of the problems in the traditional aircraft detection algorithms and the existing machine learning detection algorithms, one concept of valid aircraft detection is proposed for remote sensing images. With the full convolution detection and segmentation network based on the deep learning in the cognitive model, one valid aircraft detection system is designed and simulated. A cognitive model for detection is constructed, and the function of each module is designed. The experimental results certify the effectiveness of this system, and this system provides a new thinking way and method for the development of intelligent detection of multiple objectives.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP751

DOI:10.3788/AOS201838.0111005

所属栏目:成像系统

收稿日期:2017-06-20

修改稿日期:2017-09-14

网络出版日期:--

作者单位    点击查看

侯宇青阳:空军航空大学数字地球实验室, 吉林 长春 130000
全吉成:空军航空大学数字地球实验室, 吉林 长春 130000
魏湧明:空军航空大学数字地球实验室, 吉林 长春 130000

联系人作者:侯宇青阳(894210081@qq.com)

备注:侯宇青阳(1993-), 女, 硕士研究生, 主要从事图像处理和人工智能方面的研究。E-mail: 894210081@qq.com

【1】Xu D Q, Ni G Q, Xu T F. Study on the algorithm for automatic plane classification from remote sensing images with min-high resolution[J]. Optical Technique, 2006, 32(6): 855-862.
徐大琦, 倪国强, 许廷发. 中高分辨力遥感图像中飞机目标自动识别算法研究[J]. 光学技术, 2006, 32(6): 855-862.

【2】Yue W J. Research of aircraft target detection algorithm based on optical remote sensing image[D]. Chengdu: Southwest Jiaotong University, 2014.
岳伍军. 基于光学遥感图像的飞机目标检测算法研究[D]. 成都: 西南交通大学, 2014.

【3】Han X W. The research on key technologies of large range visible light remote sensing image typical object recognition[D]. Harbin: Harbin Institute of Technology, 2013.
韩现伟. 大幅面可见光遥感图像典型目标识别关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

【4】Ji X F, Qin N L. Target detection and classification method based on optical remote sensing image[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2015, 32(1): 23-31.
姬晓飞, 秦宁丽. 基于光学遥感图像的目标检测与分类识别方法[J]. 沈阳航空航天大学学报, 2015, 32(1): 23-31.

【5】Liu Y, Fu Z Y, Zheng F B. Research progress of target classification and recognition in high resolution remote sensing images[J]. Journal of Earth Information Science, 2015, 17(9): 1080-1091.
刘扬, 付征叶, 郑逢斌. 高分辨率遥感影像目标分类与识别研究进展[J]. 地球信息科学学报, 2015, 17(9): 1080-1091.

【6】Zhang Y D, Hu C Y, Hu C Y. Aircraft detection of remote sensing images based on convolutional neural network[J]. Optoelectronic Technology, 2017(1): 66-71.
张义德, 胡长雨, 胡春育. 基于卷积神经网络的遥感图像飞机检测[J]. 光电子技术, 2017(1): 66-71.

【7】Hui G B. Military target image classification technique based on deep layer neural network[J]. Modern Navigation, 2016(6): 430-436.
惠国保. 基于深层神经网络的军事目标图像分类技术[J]. 现代导航, 2016(6): 430-436.

【8】Gong Y H. Whether artificial intelligence will eventually surpass human intelligence--based on the basic principles of machine learning and human brain cognition[J]. People′s Forum: Academic Front, 2016(7): 12-21.
龚怡宏. 人工智能是否终将超越人类智能--基于机器学习与人脑认知基本原理的探讨[J]. 人民论坛·学术前沿, 2016(7): 12-21.

【9】Qiao S. The research on multi-source information fusion algorithm based on human brain learning and memory[D]. Tianjin: Hebei University of Technology, 2015.
乔石. 基于人脑学习与记忆的多源信息融合算法研究[D]. 天津: 河北工业大学, 2015.

【10】Gao C X, Sang N. High resolution remote sensing image target detection based on deep learning[J]. Survey and Mapping: 2014(S1): 108-111.
高常鑫, 桑农. 基于深度学习的高分辨率遥感影像目标检测[J]. 测绘通报, 2014(S1): 108-111.

【11】Luo P, Tian Y, Wang X, et al. Switchable deep network for pedestrian detection[C]. Computer Vision & Pattern Recognition, 2014.

【12】Li H, Zhao R, Wang X. Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification[EB/OL]. (2014-12-16)[2017-01-15]. https:∥arxiv.org/abs/1412.4526.

【13】Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2017-01-15]. https:∥arxiv.org/abs/1409.1556v6.

【14】Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]. European Conference on Computer Vision, 2016: 21-37.

【15】Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 39(4): 640-651.

【16】Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, PP(99): 1.

【17】Everingham M, van Gool L, Williams C K, et al. The pascal visual object classes (voc) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.

【18】Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016.

【19】Yuan Y. The research for security monitoring video leaves shade detection[D]. Wuhan: Wuhan University of Science and Technology, 2015.
袁渊. 面向安防监控视频树叶遮挡检测研究[D]. 武汉: 武汉科技大学, 2015.

【20】Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.

【21】Li H, Zhao R, Wang X. Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification[EB/OL]. (2014-12-16)[2017-01-15]. https:∥arxiv.org/abs/1412.4526.

【22】Liu D W, Han L, Han X Y. The research on classification of high resolution remote sensing images based on depth learning[J]. Acta Optica Sinica, 2016, 36(4): 0428001.
刘大伟, 韩玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究[J]. 光学学报, 2016, 36(4): 0428001.

【23】Wei H H, Cao G, Jin T, et al. Pedestrian detection based on improved star cascaded deformable component model[J]. Journal of Image and Graphics, 2017, 22(2): 170-178.
韦皓瀚, 曹国, 金挺, 等. 改进星型级联可形变部件模型的行人检测[J]. 中国图象图形学报, 2017, 22(2): 170-178.

引用该论文

Hou Yuqingyang,Quan Jicheng,Wei Yongming. Valid Aircraft Detection System for Remote Sensing Images Based on Cognitive Models[J]. Acta Optica Sinica, 2018, 38(1): 0111005

侯宇青阳,全吉成,魏湧明. 基于认知模型的遥感图像有效飞机检测系统[J]. 光学学报, 2018, 38(1): 0111005

被引情况

【1】刘星,陈坚,杨东方,贺浩. 场景耦合的空对地多任务遥感影像智能检测算法. 光学学报, 2018, 38(12): 1215008--1

【2】王玉锋,王宏伟,吴晨,刘宇,袁昱纬,全吉成. 基于共同视域的自监督立体匹配算法. 光学学报, 2019, 39(2): 215004--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF