首页 > 论文 > 光学学报 > 38卷 > 1期(pp:124001--1)

基于石墨烯表面等离激元的双支节结构光电调制器

Graphene Surface Plasmon Polaritons Based Photoelectric Modulator with Double Branched Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

构建了一种含双支节结构的石墨烯/介质/石墨烯亚波长波导结构。该结构将支节结构的选频特性和石墨烯的电可调特性相结合, 能够实现在可见光到中红外范围内对入射光光强的动态调制。表面等离激元将光能量局限在纳米尺度的介质狭缝中, 使调制器突破衍射极限, 并且增强了石墨烯与光的相互作用。利用有限元法分析了石墨烯的化学势、支节长度以及介质材料对波导结构输出光强的影响。仿真结果表明: 当入射波长为1550 nm、支节长度为315 nm、化学势由0.80 eV下降到0.78 eV时, 消光比可达到6.77 dB。与传统调制器相比, 所提光电调制器能够在保证高消光比的同时具有较高的调制效率, 并且体积小、结构简单紧凑, 可满足大规模集成应用的要求。

Abstract

A graphene/dielectric/graphene sub-wavelength waveguide structure with double branched structure is constructed. The frequency-selection characteristic of branch structure is combined with the electrical tunable characteristic of graphene, and the dynamic modulation of the intensity of incident light from visible light to mid-infrared can be achieved. Surface plasmon polaritons keep the light energy within the nanoscale dielectric slit, which causes the modulator to break the diffraction limit and enhance the interaction between graphene and light. Effects of the chemical potential, branch length and dielectric material of graphene on the output light intensity of the waveguide structure are analyzed by finite element method. Simulation results indicate that, when the incident light wavelength is 1550 nm, the branch length is 315 nm and the chemical potential decreases from 0.80 eV to 0.78 eV, the extinction ratio reaches 6.77 dB. Compared with the conventional modulator, the proposed photoelectric modulator can guarantee the high extinction ratio and modulation efficiency, and it is small in size and the structure is compact and simple, which can meet the requirements of large scale integration applications.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201838.0124001

所属栏目:遥感与传感器

基金项目:河北省自然科学基金(F2017203316)

收稿日期:2017-06-26

修改稿日期:2017-08-22

网络出版日期:--

作者单位    点击查看

李志全:燕山大学电气工程学院, 河北 秦皇岛 066004
冯丹丹:燕山大学电气工程学院, 河北 秦皇岛 066004
李欣:河北科技师范学院数学与信息科技学院, 河北 秦皇岛 066004
白兰迪:燕山大学电气工程学院, 河北 秦皇岛 066004
刘同磊:燕山大学电气工程学院, 河北 秦皇岛 066004
岳中:燕山大学电气工程学院, 河北 秦皇岛 066004
顾而丹:燕山大学电气工程学院, 河北 秦皇岛 066004

联系人作者:李志全(lzq54@ysu.edu.cn)

备注:李志全(1954-), 男, 博士, 教授, 主要从事集成光学、光纤传感及非线性光电检测方面的研究。E-mail: lzq54@ysu.edu.cn

【1】Reed G T, Thomson D, Gardes F Y, et al. 40 Gb/s silicon optical modulators[C]. IEEE Photonics Conference, 2011: 737-738.

【2】Luo S Y, Wang Y N, Tong X, et al. Graphene-based optical modulators[J]. Nanoscale Research Letters, 2015, 10(1): 199-209.

【3】Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

【4】Wu Y, La-O-Vorakiat C, Qiu X P, et al. Graphene terahertz modulators by ionic liquid gating[J]. Advanced Materials, 2015, 27(11): 1874-1879.

【5】Yang L Z, Hu T, Shen A, et al. Ultracompact optical modulator based on graphene-silica metamaterial[J]. Optics Letters, 2014, 39(7): 1909-1912.

【6】de Abajo F J G. Graphene plasmonics: Challenges and opportunities[J]. ACS Photonics, 2014, 1(3): 135-152.

【7】Du W. Study of graphene optoelectronic active devices[D]. Hangzhou: Zhejiang University, 2015.
杜威. 石墨烯光电子有源器件的研究[D]. 杭州: 浙江大学, 2015.

【8】Yan B, Yang X X, Fang J Y, et al. Tunable terahertz plasmon in grating-gate coupled graphene with a resonant cavity[J]. Chinese Physics B, 2015, 24(1): 015203.

【9】Qiao W T, Gong J, Zhang L W, et al. Propagation properties of the graphene surface plasmon in comb-like waveguide[J]. Acta Physica Sinica, 2015, 64(23): 0237301.
乔文涛, 龚健, 张利伟, 等. 梳状波导结构中石墨烯表面等离子体的传播性质[J]. 物理学报, 2015, 64(23): 0237301.

【10】Tao J, Yu X C, Hu B, et al. Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth[J]. Optics Letters, 2014, 39(2): 271-274.

【11】Gao W L, Shu J, Qiu C Y, et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. ACS Nano, 2012, 6(9): 7806-7813.

【12】Kampfrath T, Perfetti L, Schapper F, et al. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite[J]. Physical Review Letters, 2005, 95(18): 187403.

【13】Liu M, Yin X B, Zhang X. Double-layer graphene optical modulator[J]. Nano Letters, 2012, 12(3): 1482-1485.

【14】Xu C, Jin Y C, Yang L Z, et al. Characteristics of electro-refractive modulating based on graphene-oxide-silicon waveguide[J]. Optics Express, 2012, 20(20): 22398-22405.

【15】Midrio M, Boscolo S, Moresco M, et al. Graphene-assisted critically-coupled optical ring modulator[J]. Optics Express, 2012, 20(21): 23144-23155.

【16】Brownson D A C, Banks C E. The electrochemistry of CVD graphene: Progress and prospects[J]. Physical Chemistry Chemical Physics, 2012, 14(23): 8264-8281.

【17】Gan C H, Hugonin J-P, Lalanne P. Design of an integrated III-V semiconductor single-plasmon source[C]. 2012 Conference on Lasers and Electro-Optics, 2012: 13060545.

【18】Jablan M, Buljan H, Solja i M. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 2009, 80(24): 245435.

【19】Qian H L, Ma Y G, Yang Q, et al. Electrical tuning of surface plasmon polariton propagation in graphene-nanowire hybrid structure[J]. ACS Nano, 2014, 8(3): 2584-2589.

【20】Pannipitiya A, Rukhlenko I D, Premaratne M. Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions[J]. IEEE Photonics Journal, 2011, 3(2): 220-233.

【21】Liu J L. Surface plasmon transmission and control in metal-insulator-metal waveguides[D]. Harbin: Harbin Institute of Technology, 2010.
刘建龙. 金属-绝缘体-金属波导内表面等离子体传输与控制[D]. 哈尔滨: 哈尔滨工业大学, 2010.

【22】Bi W H, Li C L, Wang X Y, et al. Birefringence and electro-optic properties of graphene covered microfiber[J]. Acta Optica Sinica, 2016, 36(10): 1026013.
毕卫红, 李彩丽, 王晓愚, 等. 覆石墨烯微纳光纤双折射与电光调控特性[J]. 光学学报, 2016, 36(10): 1026013.

【23】Liu Y Z, Zhang Y P, Cao Y Y, et al. Modulator of tunable modulation depth based on graphene metamaterial[J]. Acta Optica Sinica, 2016, 36(10): 1016002.
刘元忠, 张玉萍, 曹妍妍, 等. 基于石墨烯超材料深度可调的调制器[J]. 光学学报, 2016, 36(10): 1016002.

【24】Hao R, Du W, Chen H S, et al. Ultra-compact optical modulator by graphene induced electro-refraction effect[J]. Applied Physics Letters, 2013, 103(6): 061116.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF