首页 > 论文 > 光学学报 > 38卷 > 1期(pp:0118001--1)

基于数字微镜器件并行共焦成像的光点阵列优化

Spot Array Optimization of Parallel Confocal Imaging Based on Digital Micromirror Device

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

数字微镜器件(DMD)的灵活性有助于实现并行共焦成像。设计并搭建了基于DMD的并行共焦成像系统, 分析了DMD光点阵列对轴向分辨率、横向分辨率和图像对比度的影响, 得出了最优光点阵列参数。结果表明: 光点越小, 则横向和轴向分辨率越高; 当光点间距大于光点大小时, 增大光点间距对成像的横向分辨率无明显改善; 对于1×1微镜, 光点间距为光点大小的4倍时对应的图像对比度最高, 即1×1光点大小、4倍光点间距为最优光点阵列。对数值孔径为0.25的物镜而言, 最优光点阵列对应的横向分辨率优于512 lp/mm, 轴向分辨率可达7.82 μm, 均达到衍射极限。基于最优光点阵列的三维体光栅成像比宽场成像具有更高的分辨率和明显的层切效果, 与激光扫描共焦成像相比无较大差距。基于DMD的并行共焦成像系统在保证高速成像的前提下, 实现了高分辨率和高图像对比度的光学层切成像, 在实时成像和三维成像中有一定的优势和应用前景。

Abstract

The flexibility of a digital micromirror device (DMD) helps to realize parallel confocal imaging. A parallel confocal imaging system based on DMD is designed and built. The influences of DMD spot array on axial resolution, lateral resolution and image contrast are analyzed to obtain the best spot array parameters. Results show that, the smaller the spot size is, the higher the lateral and axial resolution are. When the spot distance is larger than the spot size, the imaging horizontal resolution is not improved obviously with the increasing distance between spots. The imaging contrast is the highest when the spot interval equals to four times of spot size for 1×1 micromirror. That is to say, the optimal spot array is that spot size equals to 1×1 and spot interval equals to four times of spot size. For an objective lens with a numerical aperture of 0.25, the lateral resolution of optimal spot array is superior to 512 lp/mm, and its axial resolution can reach 7.82 μm, which reaches diffraction limit. When the optimal spot array is used to image three-dimensional body grating, it has higher resolution and obvious optical sectioning effect than that of wide field imaging, and has no much difference compared with that of laser scanning confocal imaging. The parallel confocal imaging system based on DMD achieves optical sectioning imaging with high resolution and high imaging contrast on the premise of high speed imaging. It has certain advantages and application prospects in real-time imaging and three-dimensional imaging.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O439

DOI:10.3788/AOS201838.0118001

所属栏目:显微

基金项目:国家自然科学基金青年基金(61405238,61475185,51376191)、江苏省自然科学基金青年项目(BK20141206)、苏州市医疗器械与新医药专项(ZXY201433)

收稿日期:2017-07-28

修改稿日期:2017-08-31

网络出版日期:--

作者单位    点击查看

朱茜:上海大学机电工程与自动化学院, 上海 200072中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163中国科学院苏州生物医学工程技术研究所光健康研究中心, 江苏 苏州 215163
杨西斌:中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163中国科学院苏州生物医学工程技术研究所光健康研究中心, 江苏 苏州 215163
李思黾:中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163
李辉:中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163
王驰:上海大学机电工程与自动化学院, 上海 200072
刘首鹏:中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163
简俊明:中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163
熊大曦:中国科学院苏州生物医学工程技术研究所光健康研究中心, 江苏 苏州 215163

联系人作者:熊大曦(xiongdaxi@sibet.ac.cn)

备注:朱茜(1993-), 女, 硕士研究生, 主要从事共焦显微镜和超分辨显微镜方面的研究。E-mail: 15067137901@163.com

【1】Pawley J B. Handbook of biological confocal microscopy[M]. New York: Plenum Press, 1990.

【2】Wilson T. Confocal microscopy[M]. New York: Academic Press, 1990.

【3】Yang J M, Qiu L R, Zhao W Q, et al. Laser differential reflection-confocal focal-length measurement[J]. Optics Express, 2013, 20(23): 26027-26036.

【4】Corle T R, Kino G S. Confocal scanning optical microscopy and related imaging systems[M]. San Diego: Academic Press, 1996.

【5】Wilson T, Sheppard C. Theory and practice of scanning optical microscopy[M]. London: Academic Press, 1984.

【6】Tiziani H J, Uhde H M. Three-dimensional analysis by a microlens-array arrangement[J]. Applied Optics, 1994, 33(4): 567-572.

【7】Fujita K, Nakamura O, Kaneko T, et al. Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays[J]. Optics Communications, 2000, 174(1/2/3/4): 7-12.

【8】Yu Q, Yu X F, Liu W W, et al. Re-studies on parallel confocal measurement system with digital micromirror device[J]. Acta Optica Sinica, 2011, 31(5): 0523005.
余卿, 余晓芬, 刘文文, 等. 数字微镜器件用于并行共焦测量的再研究[J]. 光学学报, 2011, 31(5): 0523005.

【9】Hanley Q S, Verveer P J, Arndt-Jovin D J, et al. Three-dimensional spectral imaging by Hadamard transform spectroscopy in a programmable array microscope[J]. Journal of Microscopy, 2000, 197: 5-14.

【10】Walker J G. Non-scanning confocal fluorescence microscopy using speckle illumination[J]. Optics Communications, 2001, 189(4/5/6): 221-226.

【11】Bitte F, Dussler G, Pfeifer T. 3D micro-inspection goes DMD[J]. Optics and Lasers in Engineering, 2001, 36(2): 155-167.

【12】Fainman Y, Botvinick E, Price J. 3D quantitative imaging of the microvasculature with the Texas instruments digital micromirror device[C]. SPIE, 2001, 4457: 137-144.

【13】Yu Q, Yu X F, Cui C C, et al. Research on image processing in parallel confocal measurement with DMD[J]. Acta Metrologica Sinica, 2015, 36(2): 113-117.
余卿, 余晓芬, 崔长彩, 等. 基于DMD的并行共焦图像处理方法研究[J]. 计量学报, 2015, 36(2): 113-117.

【14】Yu Q, Ye R F, Fan W, et al. Parameters of structured lights of DMD used in confocal measurement[J]. Optics and Precision Engineering, 2015, 23(5): 1273-1278.
余卿, 叶瑞芳, 范伟, 等. 基于数字微镜器件实现共焦测量的结构光参数[J]. 光学 精密工程, 2015, 23(5): 1273-1278.

【15】Yu X F, Yu Q, Liu W W, et al. Parallel confocal microscopy detection with digital micromirror device[J]. Opto-Electronic Engineering, 2010, 37(9): 56-62.
余晓芬, 余卿, 刘文文, 等. 数字微镜器件用于并行共焦显微探测的研究[J]. 光电工程, 2010, 37(9): 56-62.

【16】Zhang Yunbo, Strube S, Molnar G, et al. Parallel large-range scanning confocal microscope based on a digital micromirror device[J]. Optik, 2013, 124(13): 1585-1588.

【17】Zhang Y B, Hou W M, Ju A S, et al. Design and experiment of digital micromirror device based confocal microscope[J]. Chinese Journal of Scientific Instrument, 2011, 32(9): 2108-2113.
张运波, 侯文玫, 句爱松, 等. 基于数字微镜器件的共焦显微镜的设计与实验[J]. 仪器仪表学报, 2011, 32(9): 2108-2113.

【18】Zhang Y B, Hou W M, Zhang J H, et al. The development of parallel confocal microscope employing digital micromirror device[J]. Opto-Electronic Engineering, 2011, 38(6): 65-70.
张运波, 侯文玫, 郑继红, 等. 采用数字微镜的共焦显微镜的研制[J]. 光电工程, 2011, 38(6): 65-70.

【19】Guan Z C, Zhang Y B, Hou W M. The optical design of confocal microscope based on DMD[J]. Optical Instruments, 2011, 33(3): 57-61.
官志超, 张运波, 侯文玫. 基于数字微镜的共焦显微系统的光路设计[J]. 光学仪器, 2011, 33(3): 57-61.

【20】Wang Q Q, Zheng J H, Wang K N, et al. Parallel detection experiment of fluorescence confocal microscopy using DMD[J]. Scanning, 2016, 38(3): 234-239.

【21】Feng Z F, Wang L Q, Duan H L. Confocal fluorescence microendoscopy using a digital micro-mirror device[C]. SPIE, 2010, 7845(1): 367-370.

【22】Wu Y, Ye P, Arce G R, et al. A single-pixel optical-sectioning programmable array microscope (SP-PAM)[C]. SPIE, 2010, 7596: 75960D.

【23】Martial F P, Hartell N A. Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror[J]. Plos One, 2012, 7(8): e43942.

引用该论文

Zhu Qian,Yang Xibin,Li Simin,Li Hui,Wang Chi,Liu Shoupeng,Jian Junming,Xiong Daxi. Spot Array Optimization of Parallel Confocal Imaging Based on Digital Micromirror Device[J]. Acta Optica Sinica, 2018, 38(1): 0118001

朱茜,杨西斌,李思黾,李辉,王驰,刘首鹏,简俊明,熊大曦. 基于数字微镜器件并行共焦成像的光点阵列优化[J]. 光学学报, 2018, 38(1): 0118001

被引情况

【1】金幸杰,高峰,徐欣,孔文,严壮志,史国华. 同轴扫描式实时光刺激系统. 光学学报, 2019, 39(3): 317003--1

【2】叶一青,易定容,蒋威,孔令华,黄彩虹. 并行差动共焦轴向测量宽场误差修正方法. 光学学报, 2020, 40(20): 2018001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF