首页 > 论文 > 光学学报 > 38卷 > 1期(pp:0112003--1)

基于二维光学点阵形变的面形测量

Shape Measurement Based on Deformation of Two-Dimensional Optical Lattice

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

反射镜是光学仪器的核心元件, 其面形的精密测量一直是研究领域的重要内容。利用光场调控产生大小灵活可变的空间周期性分布的光学点阵, 并提出了一种基于二维光学点阵形变实现面形快速测量的方法。结合几何光学和空间三维变换理论, 建立了二维光学点阵几何形变量与反射镜三维面形的数学关联模型, 并提出了基于点阵质心的面形重构算法, 研究分析了测量方法的测量范围和单像素点分辨率, 并对反射镜进行了多倾角的实验测试, 实现了对直径为10.5 mm的反射镜的亚微米级的测量。通过将测试数据与商用干涉仪的测量数据进行比较, 验证了所提方法的可行性。该方法具有测量精度高、速度快和适应强等特点。

Abstract

A reflector is the core element of optical instruments, and the precision measurement of its shape has always been an important part of research areas. A method for rapid shape measurement based on the deformation of two-dimensional optical lattice is proposed based on the variable spatial periodic distribution optical lattice generated by the modulation of optical fields. Based on the theory of geometric optics and space three-dimensional transformation, a mathematic correlation model between a two-dimensional optical lattice deformation and a three-dimensional shape of reflector is established. A surface reconstruction algorithm based on lattice centroid is proposed. The measurement range and single pixel resolution of the proposed measurement method are analyzed. The multi-dip angle experiments are carried out, and a submicron measurement of the reflector with a diameter of 10.5 mm is achieved. The feasibility of the method is verified when we compare the test data with the measurement data of the commercial interferometer. In addition, the method has the characteristics of high precision, fast speed and strong adaptability.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TH741

DOI:10.3788/AOS201838.0112003

所属栏目:仪器,测量与计量

基金项目:国家重点研发计划(2017YFF0107003)、天津市应用基础及前沿技术研究计划(15JCZDJC31600)

收稿日期:2017-08-08

修改稿日期:2017-09-15

网络出版日期:--

作者单位    点击查看

凌秋雨:天津大学精密测试技术及仪器国家重点实验室, 天津 300072
胡春光:天津大学精密测试技术及仪器国家重点实验室, 天津 300072
查日东:天津大学精密测试技术及仪器国家重点实验室, 天津 300072
胡晓东:天津大学精密测试技术及仪器国家重点实验室, 天津 300072
胡小唐:天津大学精密测试技术及仪器国家重点实验室, 天津 300072

联系人作者:凌秋雨(2015202122@tju.edu.cn)

备注:凌秋雨(1993-), 女, 硕士研究生, 主要从事光学测量和超分辨显微技术方面的研究。E-mail: 2015202122@tju.edu.cn

【1】Wyant J C. Improved interferometric optical testing[J]. Optics and Photonics News, 2007, 18(7): 32-37.

【2】Li S H. Optical 3D shape measurement of ultra-precision specular surface[D]. Tianjin: Tianjin University, 2012: 5-6.
李绍辉. 超精密加工高反射曲面光学非接触三维形貌测量[D]. 天津: 天津大学, 2012: 5-6.

【3】Bothe T, Li W S, Kopylow C V, et al. High-resolution 3D shape measurement on specular surfaces by fringe reflection[C]. SPIE, 2004, 5457: 411-422.

【4】Liu Y K, Su X Y, Wu Q Y, et al. Three-dimensional shape measurement for specular surface based on fringe reflection[J]. Acta Optica Sinica, 2006, 26(11): 1636-1640.
刘元坤, 苏显渝, 吴庆阳, 等. 基于条纹反射的类镜面三维面形测量方法[J]. 光学学报, 2006, 26(11): 1636-1640.

【5】Wang H R, Li B, Wang Z F, et al. Surface measurement of parabolic trough unit mirror based on fringe reflection[J]. Acta Optica Sinica, 2013, 33(1): 0112007.
王华荣, 李彬, 王志峰, 等. 基于条文反射术的槽式抛物面单元镜面形测量[J]. 光学学报, 2013, 33(1): 0112007.

【6】Yuan T, Zhang F, Tao X P, et al. Test of mirror surface using fringe reflection system[J]. Acta Photonica Sinica, 2015, 44(9): 0912004.
袁婷, 张峰, 陶小平, 等. 条纹反射法检测光学反射镜面形[J]. 光子学报, 2015, 44(9): 0912004.

【7】Yuan T, Zhang F, Tao X P, et al. Three-dimensional shape measuring for specular surface based on phase measuring deflectometry[J]. Acta Optica Sinica, 2016, 36(2): 0212004.
袁婷, 张峰, 陶小平, 等. 基于相位测量偏折术的反射镜三维面形测量[J]. 光学学报, 2016, 36(2): 0212004.

【8】Yang B, Przybilla F, Mestre M, et al. Large parallelization of STED nanoscopy using optical lattices[J]. Optics Express, 2014, 22(5): 5581-5589.

【9】Bergermann F, Alber L, Sahl S J, et al. 2000-fold parallelized dual-color STED fluorescence nanoscopy[J]. Optics Express, 2015, 23(1): 211-223.

【10】Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution[J]. Science, 2014, 346(6208): 1257998.

【11】Chen Y, Ponomarenko S A, Cai Y J. Experimental generation of optical coherence lattices[J]. Applied Physics Letters, 2016, 109(6): 061107.

【12】Dong Y, Wang F, Zhao C, et al. Effect of spatial coherence on propagation, tight focusing, and radiation forces of an azimuthally polarized beam[J]. Physical Review A, 2012, 86(1): 013840.

【13】Zhao C, Cai Y, Lu X, et al. Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle[J]. Optics Express, 2009, 17(3): 1753-1765.

【14】Zhang J F, Wang Z Y, Cheng B, et al. Atom cooling by partially spatially coherent lasers[J]. Physical Review A, 2013, 88(2): 023416.

【15】Bulut K, Inci M N. Three-dimensional optical profilometry using a four-core optical fibre[J]. Optics & Technology, 2005, 37(6): 463-469.

引用该论文

Ling Qiuyu,Hu Chunguang,Zha Ridong,Hu Xiaodong,Hu Xiaotang. Shape Measurement Based on Deformation of Two-Dimensional Optical Lattice[J]. Acta Optica Sinica, 2018, 38(1): 0112003

凌秋雨,胡春光,查日东,胡晓东,胡小唐. 基于二维光学点阵形变的面形测量[J]. 光学学报, 2018, 38(1): 0112003

被引情况

【1】曲正,胡春光,查日东,胡晓东,胡小唐. 无衍射二维光学晶格的仿真方法. 光学学报, 2019, 39(5): 503001--1

【2】代晴,孙平,类智方,唐钰欣. 基于条纹光流的物体面形测量技术. 光学学报, 2019, 39(11): 1112004--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF